
ECE 471 – Embedded Systems
Lecture 25

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

13 November 2019

http://web.eece.maine.edu/~vweaver


Announcements

• Still behind on grading homeworks

• And midterms

• Did reply with project topics

• Demosplash results

• HW#9 will be posted, due a week from Friday

1



HW#9 Info

• Read temperature probe, print temp on i2c display

• Re-use code from past assignments

• Follow spec on functions to put code in, how to print

results

• Testing: 4 cases described, and set up to allow unit tests

2



Buffer Overflows

• User (accidentally or on purpose) copies too much data

into a fixed sized buffer.

• Data outside expected area gets over-written. This can

cause a crash (best case) or if user carefully constructs

code, can lead to user taking over program.

3



Buffer Overflow Example

void function(int *values , int size) {

int a[10];

memcpy(a,values ,size);

return;

}

Maps to
push {lr}

sub sp ,#44

memcpy

add sp ,#44

pop {pc}

4



a[0]

a[1]

a[2]

a[3]

a[4]

a[6]

a[5]

a[7]

a[8]

a[9]

link register

Stack pointer before entry

Stack pointer after prolog

A value written to a[11] overwrites the saved link register.

If you can put a pointer to a function of your choice there

you can hijack the code execution, as it will be jumped to

at function exit.

5



Mitigating Buffer Overflows

• Extra Bounds Checking / High-level Language (not C)

• Address Space Layout Randomization

• Putting lots of 0s in code (if strcpy is causing the

problem)

• Running in a “sandbox”

6



Dangling Pointer / Null Pointer
Dereference

• Typically a NULL pointer access generates a segfault

• If an un-initialized function pointer points there, and

gets called, it will crash. But until recently Linux allowed

users to mmap() code there, allowing exploits.

• Other dangling pointers (pointers to invalid addresses)

can also cause problems. Both writes and executions can

cause problems if the address pointed to can be mapped.

7



Privilege Escalation

• If you can get kernel or super-user (root) code to jump

to your code, then you can raise privileges and have a

“root exploit”

• If a kernel has a buffer-overrun or other type of error and

branches to code you control, all bets are off. You can

have what is called “shell code” generate a root shell.

• Some binaries are setuid. They run with root privilege

but drop them. If you can make them run your code

8



before dropping privilege you can also have a root exploit.

Tools such as ping (requires root to open raw socket),

X11 (needs root to access graphics cards), web-server

(needs root to open port 80).

9



Information Leakage

• Can leak info through side-channels

• Detect encryption key by how long other processes take?

Power supply fluctuations? RF noise?

• Timing attacks

• Meltdown and Spectre

10



Finding Bugs

• Source code inspection

• Watching mailing lists

• Static checkers (coverity, sparse)

• Dynamic checkers (Valgrind). Can be slow.

• Fuzzing

11



Computer Security

12



Social Engineering

• Often easier than actual hacking

• Talking your way into a system

• Looking like you know what you are doing

• “The Art of Deception”

13



Worrisome embedded systems

• Backdoors in routers.

• Voting Machines, ATMs

• pacemakers

• Rooting phones

• Rooting video games

• Others?

14



Voting Machines

• Maine has paper ballot — not too bad

• Often are old and not tested well (Windows XP, only

used once a year)

• How do researchers get them to test? e-bay?

• USB ports and such exposed, private physical access

• Can you trust the software? What if notices it is Election

Day and only then flips 1/10th the vote from Party A to

Party B. Would anyone notice? What if you have source

code?

15



• What if the OS does it. What if Windows had code that

on Election Day looked for a radio button for Party A

and silently changed it to Party B when pressed?

• OK you have and audit the source code. What about

the compiler? (Reflections on Trusting Trust). What

about the compiler that compiled the compiler?

• And of course the hardware, but that’s slightly harder to

implement but a lot harder to audit.

16



Examples – CANbus

• 2010 IEEE Symposium on Security and Privacy.

Experimental Security Analysis of a Modern Automobile

U of Washington and UCSD.

• Fuzzing/ARM/CANbus

• can control brakes (on / off suddenly)

• heating, cooling, lights, instrument panel

• windows/locks Why? fewer wires if on a bus then

direct-wired

• electronic stability control, antilock, need info from each

17



wheel

• roll stability control (affect braking, turning to avoid

rollover)

• cruise control

• pre-crash detection (tighten seatbelts, charge brakes)

• while it might be nice to have separate busses for

important and unimportant, in practice they are bridged

• Locks– monitor buttons, also remote keyfob... but also

disengage if airbag deploys

• OnStar – remotely monitor car, even remotely stop it (in

case of theft) over wireless modem

18



• Access? OBD-II port, also wireless

• 2009 car

• cars after 2008 required to have canbus?

• Problems with CAN

◦ Broadcast... any device can send packets to any other

◦ Priority.. devices set own priority, can monopolize bus

◦ No authentication... any device can control any other

◦ Challenge-response. Cars are supposed to block

attempts to re-flash or enter debug mode without

auth. But, mostly 16-bits, and required to allow a try

every 10s, so can brute force in a week.

19



◦ If you can re-flash firmware you can control even w/o

ongoing access

• Not supposed to disable CAN or reflash firmware while

car moving, but on the cars tested they could.

• Probing – packet sniffing, fuzzing (easier as packet sizes

small)

• experiments – on jackstands or closed course

• controlled radio – display, sounds, chimes

• Instrument panel – set arbitrary speed, rpm, fuel,

odometer, etc

• Body control – could lock/unlock (jam by holding down

20



lock), pop trunk, blow horn, wipers on, lights off

• Engine... mess with timing. forge ”airbag deployed” to

stop engine

• Brakes.. managed to lock brakes so bad even reboot

and battery removal not fix, had to fuzz to find antidote

• can over-ride started switch. wired-or

• test on airport. cord to yank laptop out of ODB-II

• fancy attacks. Have speedometer read too high. Disable

lights. ”self-destruct” w countdown on dash, horn

beeping as got closer, then engine disable.

21



Stuxnet

• SCADA – supervisory control and data acquisition

• industrial control system

• STUXNET.. targets windows machines, but only

activates if Siemens SCADA software installed. four

zero-day vulnerabilities

USB flash drives

signed with stolen certificates

22



• Interesting as this was a professional job. Possibly

by US/Israel targeting very specific range of centrifuges

reportedly used by Iran nuclear program. While reporting

”everything OK” the software then spun fast then slow

enough to ruin equipment.

23



Examples – JTag/hard-disk

• JTAG/Hard-disk takeover

• http://spritesmods.com/?art=hddhack&page=8

• Find JTAG

• 3 cores on hard-disk board, all ARM. One unused.

• Install custom Linux on third core. Then have it do

things like intercept reads and change data that is read.

24

http://spritesmods.com/?art=hddhack&page=8


Places for More Info

• Embedded projects: http://hackaday.com

They had a recent series on CAN-bus

• Computer Risks and Security Issues: The RISKS digest

from comp.risks

http://www.risks.org

25

http://hackaday.com
http://www.risks.org


Software Bugs

• Not all bugs are security issues

• Coding bugs can have disastrous effects

26



Automotive

• Until recently no standard

• Bugs, Toyota firmware

• http://www.edn.com/design/automotive/4423428/2/Toyota-s-killer-firmware--Bad-design-and-its-consequences

27

http://www.edn.com/design/automotive/4423428/2/Toyota-s-killer-firmware--Bad-design-and-its-consequences


Airplanes

• DO-178B / DO-178C

• Software Considerations in Airborne Systems and

Equipment Certification

– Catastrophic: fatalities, loss of plane

– Hazardous: negative safety, serious/fatal injuries

– Major: reduce safety, inconvenience or minor injuries

– Minor: slightly reduce safety, mild inconvenience

– No Effect: no safety or workload impact

28



• AA Flight 965. Autopilot to waypoint R. Re-entered

it, two starting with R, so it helpfully picked one with

highest frequency, did a semi-circle turn to east right

into a mountain.

• Air France Flight 447, reliance on autopilot

29



Military

• Patriot missile – clock drift slightly, but when on for

hundreds of hours enough to affect missile tracking

• Yorktown smart ship – 1997 – Running Windows NT.

Someone entered 0 in a field, divide by 0 error, crashed

the ship. Database crash, crashed propulsion system.

Rumors that it needed to be towed in, but no, only down

for 2.75 hours.

• F-22s computers crashed when crossing 180 degrees

longitude? Lost navigation and communication, had to

30



follow tankers back to Hawaii.

31


