
ECE 471 – Embedded Systems
Lecture 26

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

15 November 2019

http://web.eece.maine.edu/~vweaver

Announcements

• HW#9 was assigned, due a week from Friday

• HW#5 finally turned back

◦ One note, can you do int i=01101111; to get

binary?

No, either use hex, or use 0b01101111 (gcc extension?)

◦ Also, note we are using LED displays not LCD.

• I will try to have HW#7 and HW#8 graded so you can

use in HW#9

(HW#6 might be graded last)

1

• Also the midterms aren’t back yet, hopefully Monday

2

HW#9 Info

• Re-use i2c display code from earlier homework

• Re-use temp code (either TMP36 or the 1-wire)

• Display the temperature on display

• Code coverage, Writing good testable code

• Converting a double to characters to print

◦ Use sprintf()
char string [128];

double temperature;

sprintf(string ,"%.1lf",temperature);

/* Now string [0] has first digit , string [1] second , etc */

3

◦ Use division/modulus
double temperature =23.4;

int hundreds ,tens , ones ,remainder;

hundreds=temperature /100;

remainder=temperature %100;

tens=remainder /10;

ones=remainder %10;

4

Software Bugs

• Not all bugs are security issues

• Coding bugs can have disastrous effects

5

Spacecraft

• Mariner 1 (1962) – rocket off course due to

mis-transcribed specification into FORTRAN, missing

overbar

• Apollo 11 (1969) – landing on moon.

◦ 36k ROM (rope), 2k RAM, 70lbs, 55W, 5600 3-input

NOR

◦ Processor normally loaded with 85% load. DELTAH

program run which take 10%. But buggy radar device

was stealing 13% even though in standby mode.

6

◦ Multiple 1202 overload alarms

◦ Mini real-time OS with priority killed low-priority tasks

so things still worked.

• Ariane 5 Flight 501 (1996) – famous. $370 million.

◦ Old code copied from Ariane 4. Horizontal acceleration

◦ Could not trigger on Ariane 4 (accel never that large)

◦ Could trigger on more powerful Ariane 5

◦ Conversion from 64-bit float to 16-bit signed int

overflowed. Trap

◦ Primary guidance computer crashed

◦ Secondary computer, but ran same code, crashed

7

◦ Sent debug messages after crash, autopilot read those

as velocity data

◦ Destructed 37s after launch

◦ Written in ADA

• NASA Mars Polar Lander (1999)

◦ likely mistook turbulence vibrations for landing and

shut off engine 40m above surface

• NASA Mars Climate Orbiter

◦ ground software using lbf (pound/foot) units, craft

expecting Newtons

• NASA Mars Spirit rover (2004)

8

◦ temporarily disabled due to too many files on flash

drive

◦ Constantly rebooting

◦ Radio could understand some commands directly,

could reboot with flash disabled.

◦ Fixed when deleted some unneeded files.

◦ Eventually reformat.

◦ Issue is 90 day design period, lasted years (until 2010)

• Phobos-Grunt (2012)

◦ Bit flip in memory caused it to crash before firing

rockets to Mars

9

◦ Entered safe mode waiting for command

◦ Antennas not deployed until after rocket firing

◦ Could not receive command to leave safe mode.

• ExoMars Schiaparelli Lander (2016)

◦ Bad data to inertial measurement unit for 1 second

◦ thought this meant it was below ground level, released

parachute when still 3.7km up.

◦ Had valid data from radar

10

Medical Example

• Therac-25 radiation treatment machine, 1985-1987

• 6 accidents, patients given 100x dose. Three died

High power beam activated w/o spreader too.

Older machines had hardware interlock, this one in

software. Race condition. If 8-bit counter overflow just

as entering manual over-ride, it would happen.

• Triggering the bug

◦ To trigger, had to press X (mistake), up (to correct),

E (to set proper) then ”Enter” all within 8 seconds.

11

This was considered an improbable series of keypresses.

◦ This missed during testing as it took a while for

operators to get used to using machines enough to

type that fast.

◦ Used increment rather than move to set flag, this

meant sometimes it wrapped from 255 to 0, disabling

safety checks

◦ Written in Assembly Language

Things that went wrong with design

◦ Software not independently reviewed

◦ No reliability modeling or risk management

12

◦ Something wrong: Printed “MALFUNCTION” and

error number 1 to 64 which was not documented in

manual. Press P to clear.

◦ Operators not believe complaints from patients.

◦ The setup was not tested until after it was installed at

hospital.

◦ cut-and-pasted software from earlier model that had

hardware interlocks

◦ Concurrent (parallel) operation with race conditions

13

Financial

• Knight Capital. Upgrade 7 of 8 machines, missed last.

Re-used a flag definition with new software. Caused

massive selloff, $440 million

14

Power

• 2003 Blackout

◦ Power plant fail. Cause more current down

transmission lines in Ohio. Heat, expand, touch tree,

short out.

◦ Race condition in Unix XA/21 management system,

so alarms not go off

◦ Eventually primary system fail as too many alarms

queue up

◦ Backup server also fail

15

◦ During failure, screens take 59s (instead of 1s) to

update

◦ Blackout of most of NY and a lot of north east.

16

Space Shuttle Design

• https://www.nasa.gov/mission_pages/shuttle/flyout/

flyfeature_shuttlecomputers.html

• Issues normal embedded systems don’t have: Vibration

at liftoff, Radiation in Space

• If computer stopped for more than 120ms, shuttle could

crash

• “Modern” update in 1991: 1MB Ram, 1.4MIPS. Earlier

was 416k and 1/3 as fast and twice as big

• Change to code, 9 months testing in simulator, 6 months

17

https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlec omputers.html
https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlec omputers.html

more extensive testing

• 24 years w/o in-orbit SW problem needing patches

• 12 year stretch only 3 SW bugs found

• 400k lines of code

• HAL/S high-order assembly language (high-level

language similar to PL/I)

• PASS software – runs tasks. Too big to fit in memory

at once

• BFS – backup flight software. Bare minimum to takeoff,

stay in orbit, safely land, fits in memory, monitors pASS

during takeoff/landing Written by completely different

18

team.

• 28 months to develop new version

• IBM

• Extensive verification. One internal pass, one external

• 4 computers running PASS, one running BFS

• Single failure mission can continue; still land with two

failures

• 4 computers in lock-step, vote, defective one kicked out

19

