
ECE 471 – Embedded Systems
Lecture 33

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

4 December 2019

http://web.eece.maine.edu/~vweaver

Announcements

• N/A

1

Introduction to Performance Analysis

2

What is Performance?

• Getting results as quickly as possible?

• Getting correct results as quickly as possible?

• What about Budget?

• What about Development Time?

• What about Hardware Usage?

• What about Power Consumption?

3

Know Your Limitation

• CPU Constrained

• Memory Constrained (Memory Wall)

• I/O Constrained

• Thermal Constrained

• Energy Constrained

4

Performance Optimization Cycle

Code

Develop

Usage /
Production

Modify / Tune

Analyze

Measure

Functionally Complete/
Correct Code

Correct/Optimized Code
Functionally Complete/

5

Wisdom from Knuth

“We should forget about small efficiencies, say about 97%

of the time:

premature optimization is the root of all evil.

Yet we should not pass up our opportunities in that

critical 3%. A good programmer will not be lulled into

complacency by such reasoning, he will be wise to look

carefully at the critical code; but only after that code has

been identified” — Donald Knuth

6

Amdahl’s Law

Time

Original

Speed up Blue 100x

Speed up Red 2x

7

Measuring Time

• Already talked about Power, but other aspect is speed

(time)

• time command

• Reports real (wall-clock), user (used by program), sys

(kernel)

• In virtualized systems wall-clock time might become

meaningless

8

• Timers, rdtsc?

• When can user time exceed real? (multi-threaded)

• When can user+sys be less than real? (If something else

is using the system)

• Waiting on I/O and Interrupts count as sys time.

9

Using “time”

vince@rasp-pi5 ~/research/libpfm4/examples $ time /bin/ls

check_events check_events.o showevtinfo showevtinfo.o

check_events.c Makefile showevtinfo.c

real 0m0.018s

user 0m0.010s

sys 0m0.000s

What do they mean? Can real be higher than user? Can

user be more than real? Is it deterministic (will it vary run

10

to run)

11

What are Hardware Performance Counters?

• Registers on CPU that measure low-level system

performance

• Available on most modern CPUs; increasingly found on

GPUs, network devices, etc.

• Low overhead to read

12

Low-level interface

• on x86: MSRs

• ARM: CP15 system control register

13

CP15 registers in Pi

• BCM2835 (Original Pi)

◦ 3 counters available (1 cycle counter, 2 generic)

◦ 25 events

◦ No way to specify kernel vs user

◦ On Raspberry Pi original overflow interrupt not

connected

• BCM2836 (Pi2)

◦ The ARM-Cortex A7 has 5 counters

◦ Can specify kernel, user

14

◦ Overflow works

• BCM2837 (Pi3)

◦ The ARM-Cortex A53 has 7 counters

◦ Can specify kernel, user

◦ Overflow works

15

CP15 Interface

• use mcr, mrc to move values in/out

MRC p15,0,Rt,c9,c12,0

MCR p15,0,Rt,c9,c12,0

• Two EVNTCNT registers

• Cycle Counter register

• Two Event Config registers

• Count enable set/clear, count interrupt enable/clear,

16

overflow, software increment

• PMU management registers

• in general only privileged access (why) but can be

configured to let users access.

17

Hardware Performance Counters: The
Operating System Interface

18

Operating System Interface

A typical operating system performance counter interface

will provide the following:

• A way to select which events are being monitored

• A way to start and stop counting

• A method of reading counter results when finished, and

• If the CPU supports notification on counter overflow,

some mechanism for passing on overflow information

19

Operating System Interface

Some operating systems provide additional features:

• Event scheduling: often there are limitations on which

events can go into which counters,

• Multiplexing: the OS can hide the fact that only a

limited number of counters are available by swapping

events in and out and extrapolating counts using time

accounting,

• Per-thread counting: by loading and saving counter

20

values at context switch time a count specific to a

process can be achieved,

• Attaching to a process: counts can be taken from an

already running process, and

• Per-cpu counting: as with per-thread counting, counts

can be accumulated per-cpu.

21

Older Linux Interfaces

• Historical – typically just exported msrs

• Oprofile – only does profiling

• Perfctr – good but required kernel patch

• Perfmon2 – was making headway until perf event came

from nowhere and became official

22

perf event

• Developed from scratch in 2.6.31 by Molnar and Gleixner

• Everything in the kernel

• perf event open() syscall (manpage still under

development)

• perf event attr structure with 40 complex interdependent

parameters

• ioctl() system call to enable/disable

23

• read() system call to read values

• can gather sampled data in circular buffer

• can get signal on overflow or full buffer

24

perf event Generalized Events

• perf event provides support for “common” generalized

events

• makes things easier for user at expense of papering over

the differences between events

• events need to be validated to make sure they are

providing useful results

25

perf event Generalized Events Issues

• Which event to choose (Nehalem)

• From 2.6.31 to 2.6.35 AMD “branches” was taken not

total

• Nehalem L1 DCACHE reads.

PAPI uses L1D CACHE LD:MESI;

perf uses MEM INST RETIRED:LOADS

26

perf event Event Scheduling

• Some events have hardware constraints. Can only be in

one counter

• You can do this scheduling in userspace; lets the

algorithm be changed more easily

• Scheduling can be expensive; do so at event start can

slow things down.

27

perf event Multiplexing

• You may wish to measure more events simultaneously

than hardware can support (NMI watchdog may steal

one too)

• perf event supports this in-kernel (you can also do this

in userspace)

• there are various ways to try to ensure good statistical

results. in kernel you have to trust the kernel

programmers.

28

perf event Event Names

• Event names are provided in the hardware manuals, but

can be inconsistent

• Traditionally used libraries to provide names. libpfm4

• perf tool is starting to provide own list of events (they

refuse to link libpfm4) that are based on a hybrid of

libpfm4 and kernel names

• Also some event names are provided by the kernel under

/sys

29

perf event Software Events

• perf event provides internal kernel events through same

interface

• page-fault, task-clock, cpu-clock, etc.

30

perf event Perf Tool

• Included with kernel source code

• Tied to kernel, but backwards compatible

• Most kernel devs use this rather than outside tools

• apt-get install linux-perf (new) or linux-tools (old)

31

perf

Based on a tutorial found here:

https://perf.wiki.kernel.org/index.php/Tutorial

32

perf list

Lists available events

List of pre-defined events (to be used in -e):

cpu-cycles OR cycles [Hardware event]

instructions [Hardware event]

cache-references [Hardware event]

cache-misses [Hardware event]

branch-instructions OR branches [Hardware event]

branch-misses [Hardware event]

bus-cycles [Hardware event]

cpu-clock [Software event]

task-clock [Software event]

page-faults OR faults [Software event]

minor-faults [Software event]

major-faults [Software event]

context-switches OR cs [Software event]

33

perf stat – Aggregate results

vince@arm:~/class/ece571$ perf stat ./matrix_multiply

Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

11585.144036 task-clock # 0.999 CPUs utilized

19 context-switches # 0.000 M/sec

0 CPU-migrations # 0.000 M/sec

1,633 page-faults # 0.000 M/sec

10,343,746,076 cycles # 0.893 GHz

5,031,717 stalled-cycles-frontend # 0.05% frontend cycles idle

9,521,135,479 stalled-cycles-backend # 92.05% backend cycles idle

1,176,286,814 instructions # 0.11 insns per cycle

8.09 stalled cycles per insn

137,835,961 branches # 11.898 M/sec

831,736 branch-misses # 0.60% of all branches

11.591796875 seconds time elapsed

34

perf stat – Specifying Events

vince@arm:~/class/ece571$ perf stat -e instructions,cycles ./matrix_multiply

Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

1,174,788,622 instructions # 0.14 insns per cycle

8,346,588,065 cycles # 0.000 GHz

12.394775391 seconds time elapsed

35

perf stat – Specifying Masks

:u is user, :k kernel

ARM Cortex A9 cannot specify this distinction (results

shown here are x86)

vince@arm:~/class/ece571$ perf stat -e instructions,instructions:u ./matrix_multiply

Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

950,526,051 instructions # 0.00 insns per cycle

945,661,967 instructions:u # 0.00 insns per cycle

1.052072277 seconds time elapsed

36

libpfm4 – Finding All Event Names
./showevtinfo

Supported PMU models:

[51, perf, "perf_events generic PMU"]

[65, arm_ac8, "ARM Cortex A8"]

[66, arm_ac9, "ARM Cortex A9"]

[75, arm_ac15, "ARM Cortex A15"]

Detected PMU models:

[51, perf, "perf_events generic PMU", 80 events, 1 max encoding, 0 counters, OS generic PMU]

[66, arm_ac9, "ARM Cortex A9", 57 events, 1 max encoding, 2 counters, core PMU]

Total events: 254 available, 137 supported

...

#-----------------------------

IDX : 138412068

PMU name : arm_ac9 (ARM Cortex A9)

Name : NEON_EXECUTED_INST

Equiv : None

Flags : None

Desc : NEON instructions going through register renaming stage (approximate)

Code : 0x74

#-----------------------------

....

37

libpfm4 – Finding Raw Event Values

./check_events NEON_EXECUTED_INST

Supported PMU models:

[51, perf, "perf_events generic PMU"]

[65, arm_ac8, "ARM Cortex A8"]

[66, arm_ac9, "ARM Cortex A9"]

[75, arm_ac15, "ARM Cortex A15"]

Detected PMU models:

[51, perf, "perf_events generic PMU"]

[66, arm_ac9, "ARM Cortex A9"]

Total events: 254 available, 137 supported

Requested Event: NEON_EXECUTED_INST

Actual Event: arm_ac9::NEON_EXECUTED_INST

PMU : ARM Cortex A9

IDX : 138412068

Codes : 0x74

38

perf – Using Raw Event Values

vince@arm:~/class/ece571$ perf stat -e r74 ./matrix_multiply

Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

1 r74

11.303955078 seconds time elapsed

39

perf stat – multiplexing

perf stat -e instructions,instructions,branches,cycles,cycles ./matrix_multiply

Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

1,178,121,057 instructions # 0.12 insns per cycle [40.23%]

1,180,460,368 instructions # 0.12 insns per cycle [60.25%]

138,550,072 branches [80.09%]

9,999,614,616 cycles # 0.000 GHz [79.85%]

9,926,949,659 cycles # 0.000 GHz [20.17%]

11.214630127 seconds time elapsed

Note same event not same results, approximate because

an estimate. Percentage shown is percentage event was

active during run.

40

perf stat – all cores
vince@arm:~/class/ece571$ sudo perf stat -a ./matrix_multiply

Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

24089.660644 task-clock # 2.001 CPUs utilized [100.00%]

105 context-switches # 0.000 M/sec [100.00%]

1,641 page-faults # 0.000 M/sec

9,218,451,619 cycles # 0.383 GHz [100.00%]

9,707,195 stalled-cycles-frontend # 0.11% frontend cycles idle [100.00%]

8,393,095,067 stalled-cycles-backend # 91.05% backend cycles idle [100.00%]

1,193,164,945 instructions # 0.13 insns per cycle

7.03 stalled cycles per insn [100.00%]

139,913,572 branches # 5.808 M/sec [100.00%]

1,221,237 branch-misses # 0.87% of all branches

12.040527344 seconds time elapsed

Run on all cores of system even if your process not running
there. -a option. Need root permissions

41

perf record – sampling

vince@arm:~/class/ece571$ time ./matrix_multiply

Matrix multiply sum: s=27665734022509.746094

real0m10.747s

user0m10.688s

sys0m0.055s

vince@arm:~/class/ece571$ time perf record ./matrix_multiply

Matrix multiply sum: s=27665734022509.746094

[perf record: Woken up 2 times to write data]

[perf record: Captured and wrote 0.454 MB perf.data (~19853 samples)]

real0m12.009s

user0m11.797s

sys0m0.203s

perf record creates perf.data, use -o to specify output

42

perf report – summary of recorded data

99.62% matrix_multiply matrix_multiply [.] naive_matrix_multiply

0.38% matrix_multiply [kernel.kallsyms].head.text [k] 0xc0046a54

0.00% matrix_multiply ld-2.13.so [.] _dl_relocate_object

0.00% matrix_multiply [kernel.kallsyms] [k] __do_softirq

Our benchmark is simple (only one function) so the profiled

results are not that exciting.

The [k] indicates that profile happened while the kernel

was running.

43

perf annotate – show hotspots in assembly

0.00 : 845a: vldr d7, [pc, #124] ; 84d8 <naive_matrix_m

30.97 : 845e: adds r1, r4, r3

1.43 : 8460: add.w r3, r3, #4096 ; 0x1000

1.17 : 8464: adds r2, #8

1.36 : 8466: cmp.w r3, #2097152 ; 0x200000

2.97 : 846a: vldr d5, [r2]

2.62 : 846e: vldr d6, [r1]

2.78 : 8472: mov r9, r2

2.42 : 8474: vmla.f64 d7, d5, d6

53.81 : 8478: bne.n 845e <naive_matrix_multiply+0x72>

0.01 : 847a: adds r5, #1

The annotated results show a branch and an add instruction accounting for 83%

of profiles. Likely this is due to skid and the key instruction is the previous vmla.f64

floating point multiply instruction. The processor just isn’t able to stop at the exact

instruction when the interrupt comes in.

44

