ECE 471 – Embedded Systems Lecture 8

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

18 September 2020

Announcements

HW#3 will be posted

 Pick up parts! An e-mail was sent out! If you need them mailed, let me know as soon as possible!

Stuff from Last Time

- Are there executable formats other than ELF?
- VM layout for Linux vs Physical

Low-Level ARM Linux Assembly

Linux C (ABI)

- Application Binary Interface
- The rules an executable needs to follow in order to talk to other code/libraries on the system
- A software agreement, this is not enforced at all by hardware
- r0-r3 are first 4 arguments/scratch (extra go on stack)
 (caller saved)
- r0-r1 are return value
- r4-r11 are general purpose, callee saved

- r12-r15 are special
- Things are more complex than this. Passing arrays and structs? 64-bit values? Floating point values? etc.

Kernel Programming ABIs

- OABI "old" original ABI (arm). Being phased out. slightly different syscall mechanism, different alignment restrictions
- EABI new "embedded" ABI (armel)
- hard float EABI compiled with ARMv7 and VFP (vector floating point) support (armhf). Raspberry Pi (raspbian) is compiled for ARMv6 armhf.

System Calls (EABI/armhf)

- System call number in r7
- Arguments in r0 r6
- Return value in r0 (-1 if error, errno in -4096 0)
- Call swi 0x0
- System call numbers can be found in /usr/include/arm-linux-gnueabihf/asm/unistd.h
 They are similar to the 32-bit x86 ones.

System Calls (OABI)

- The previous implementation had the same system call numbers, but instead of r7 the number was the argument to swi.
- This was very slow, as there is no way to determine that value without having the kernel backtrace the callstack and disassemble the instruction.

Manpage

The easiest place to get system call documentation.

man open 2

Finds the documentation for "open". The 2 means look for system call documentation (which is type 2).

A first ARM assembly program: hello_exit

Some GNU assembler notes

- Code comments
 - @ is the traditional comment character
 - # can be used on line by itself but will confuse assembler if on line with code.
 - Can also use /* */ and //
 - *Cannot* use;
- Order is source, destination
- Constant value indicated by # or \$
- .equ is equivalent to a C #define

hello_exit example

Assembling/Linking using make, running, and checking the output.

```
lecture6$ make hello_exit_arm
as -o hello_exit_arm.o hello_exit_arm.s
ld -o hello_exit_arm hello_exit_arm.o
lecture6$ ./hello_exit_arm
lecture6$ echo $?
```


Let's look at our executable

- ls -la ./hello_exit_arm
 Check the size
- readelf -a ./hello_exit_arm
 Look at the ELF executable layout
- objdump --disassemble-all ./hello_exit_arm See the machine code we generated
- strace ./hello_exit_arm

 Trace the system calls as they happen.


```
hello_world example
.equ SYSCALL_EXIT,
.equ SYSCALL_WRITE,
.equ STDOUT,
        .globl _start
_start:
                r0, #STDOUT
                                         /* stdout */
        mov
        ldr
                r1,=hello
                r2,#13
                                         @ length
        mov
                r7, #SYSCALL_WRITE
        mov
                0 \times 0
        swi
        # Exit
exit:
                r0,#5
        mov
                r7,#SYSCALL_EXIT
                                         0 put exit syscall number in r7
        mov
                0x0
                                         @ and exit
        swi
.data
                .ascii "Hello⊔World!\n"
hello:
```


New things to note in hello_world

- The fixed-length 32-bit ARM cannot hold a full 32-bit immediate
- Therefore a 32-bit address cannot be loaded in a single instruction
- In this case the "=" is used to request the address be stored in a "literal" pool which can be reached by PC-offset, with an extra layer of indirection.
- Data can be declared with .ascii, .word, .byte
- BSS can be declared with .lcomm

simple loop example

```
# for(i=0;i<10;i++) do_something();
               r0,#0
                               # set loop index to zero
       mov
loop:
       push
               {r0}
                              # save r0 on stack
       bl
               do_something # branch to subroutine, saving
                               # return address in link register
               {r0}
                               # restore r0 from stack
       pop
       add
               r0, r0, #1 # increment loop counter
               r0,#10
                           # have we reached 10 yet?
       cmp
                               # if not, loop
       bne
               loop
```


string count example

Count the number of chars in a string until we hit a space.

```
r1,=hello
                                  # load pointer to hello string into r1
        mov
                r2,#0
                                  # initialize count to zero
        mov
loop:
        ldrb
                r0,[r1]
                                  # load byte pointed by r1 into r0
                r0,#'<sub>\|</sub>'
                                  # compare r0 to space character
        cmp
                                  # this updates the status flags
                                  # if it was equal, we are done
        beq
                 done
        add
                r2,r2,#1
                                  # increment our count
                r1,r1,#1
        add
                                  # increment our pointer
                 loop
                                  # branch (unconditionally) to loop
        b
done:
```

