ECE 471 – Embedded Systems Lecture 12

Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu

28 September 2020

Announcements

• How is HW#4 going?

Debouncing (from last time)

• Noisy switches, have to debounce

Debouncing!

- Can you fix in hardware? Capacitors?
- Can you fix in software? No built-in debounce like on STM32L
- Algorithms
 - \circ Wait until you get X consecutive values before changing
 - \circ Get new value, wait short time and check again

Coding Directly for the Hardware

One way of developing embedded systems is coding to the raw hardware, as you did with the STM Discovery Boards in ECE271.

- Compile code
- Prepare for upload (hexbin?)
- Upload into FLASH
- Boots to offset

- Setup, flat memory (usually), stack at top, code near bottom, IRQ vectors
- Handle Interrupts
- Must do I/O directly (no drivers)
 Although if lucky, can find existing code.
- Code is specific to the hardware you are on

Instead, one can use an Operating System

Why Use an Operating System?

- Provides Layers of Abstraction
 - Abstract hardware: hide hardware differences. same hardware interface for classes of hardware (things like video cameras, disks, keyboards, etc) despite differing implementation details
 - Abstract software: with VM get linear address space, same system calls on all systems
- Other benefits:

Multi-tasking / Multi-user

- Security, permissions (Linus dial out onto /dev/hda)
- Common code in kernel and libraries, no need to reinvent
- Handle complex low-level tasks (interrupts, DMA, task-switching)
- Abstraction has a cost
 - Higher overhead (speed)
 - Higher overhead (memory)
 - \circ Unknown timing
- What about other things?
 - Easy to code for? Provide examples

• Nice GUI interface? Sometimes

What's included with an OS

- kernel / drivers (syscall barrier) Linux definition
- also system libraries Solaris definition
- low-level utils / software / GUI Windows definition Web Browser included?
- Linux usually makes distinction between the OS Kernel and distribution. OSX/Windows usually doesn't.

Bypassing Linux to hit hardware directly

• Linux does not support things like pullups, but people have written code that will poke the relevant bits directly.

Bypassing Linux for speed

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/

Trying	to generate	fastest	GPIO	square	wave.
shell	gpio util	40Hz]		
shell	sysfs	2.8kHz			
Python	WiringPi	28kHz			
Python	RPi.GPIO	70kHz			
C	sysfs (vmw)	400kHz			
C	WiringPi	4.6MHz			
C	libbcm2835	5.4MHz			
C	Rpi Foundation "Native	'' 22MHz			

Operating Systems Types

- Monolithic kernel everything in one big address space.
 Something goes wrong, lose it all. Faster
- Microkernel separate parts that communicate by message passing. can restart independently. Slower.
- Microkernels were supposed to take over the world.
 Didn't happen. (GNU Hurd?)
- Famous Torvalds (Linux) vs Tannenbaum (Minix) flamewar

Common Desktop/Server Operating Systems

- Windows
- OSX
- Linux
- FreeBSD / NetBSD / OpenBSD
- UNIX (Irix/Solaris/AIX/etc.)
- BeOS/Haiku

Embedded Operating Systems

- Microsoft WinCE, Windows Mobile
- Linux / Android
- VXworks realtime OS, used on many space probes
- Apple iOS
- QNX realtime microkernel UNIX-like OS, owned by Blackberry now
- Cisco iOS
- ThreadX found in Pi GPU

Embedded Linux Distributions

- linaro consortium that work on ARM software
- openwrt small distro initially designed for wireless routers
- yocto Linux Foundation sponsored embedded distro
- maemo embedded distro originally by Nokia (obsolete)
- MeeGo continuation of maemo, also obsolete

- Tizen Follow up on MeeGo, by Samsung and Intel
- Ängstrom Merger of various projects
- And many others. It's very easy to put together a Linux distribution

