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Announcements

• Don’t forget HW#5

• I am catching up on grading, sorry for the delay
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Raspberry Pi Booting (pre pi4)

• Unusual

• Small amount of firmware on SoC

• ARM 1176 brought up inactive (in reset)

• Videocore loads first stage from ROM

• This reads bootcode.bin from FAT partition on SD

card into L2 cache. It’s actually a RTOS (real time OS

in own right “ThreadX”) (50k)

• This runs on videocard, enables SDRAM, then loads

start.elf (3M)

2



• This initializes things, the loads and boots Linux

kernel.img. (also reads some config files there first)

(4M)
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Pi4 booting

• https://www.raspberrypi.org/documentation/hardware/raspberrypi/booteeprom.md

• SPI EEPROM holds equivelent of bootcode.bin, no

longer read from partition

• Why? SDRAM, PCIe USB, etc are more complex

• No network/USB booting yet, coming soon
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More booting

• Most other ARM devices, ARM chip runs first-stage

boot loader (often MLO) and second-stage (uboot)

• FAT partition

Why FAT? (Simple, Low-memory, Works on most

machines, In theory no patents despite MS’s best

attempts (see exfat))

The boot firmware (burned into the CPU) is smart

enough to mount a FAT partition
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Trusted Firmware

• Can you trust your firmware to be not-evil?

• Evil Maid problem – what if someone breaks into your

hotel room and replaces your firmware – could you tell?

• Best you can do is trust it to be the same firmware

released by your vendor (you still have to trust them)

• Use cryptographic signing. Hardware will only run code

“signed” by a trusted entity.

• A signed firmware can run a signed bootloader which

can run a signed operating system which can run signed
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apps

• Downside: no longer general purpose, average person

cannot run code they wrote unless they can get it signed

• Code still has to be well written. “jailbreaks” on phones

and video game consoles are due to trusted code having

bugs and then jumping into unsigned code.
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Trusted Firmware

• What is the Pi GPU doing?

• What about the T2 processor on macs?

• New for ARMv8: ARM Trusted Firmware (ATF). Two

standards, vendors have possibly made a mess of it

already.

• Other platforms have it too. DRM to keep you from

copying movies or video games.
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Boot Methods

Firmware can be quite complex.

• Floppy

• Hard-drive (PATA/SATA/SCSI/RAID)

• CD/DVD

• USB

• Network (PXE/tftp)
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• Flash, SD card

• Tape

• Networked tape

• Paper tape? Front-panel switches?
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Disk Partitions

• Way to virtually split up disk.

• DOS GPT – old partition type, in MBR. Start/stop

sectors, type

• Types: Linux, swap, DOS, etc

• GPT had 4 primary and then more secondary

• Lots of different schemes (each OS has own, Linux

supports many). UEFI more flexible, greater than 2TB

• Why partition disks?

◦ Different filesystems; bootloader can only read FAT?
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◦ Dual/Triple boot (multiple operating systems)

◦ Old: filesystems can’t handle disk size
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Device Detection

• x86, well-known standardized platform. What windows

needs to boot. Can auto-discover things like PCI bus,

USB. Linux kernel on x86 can boot on most.

• Old ARM, hard-coded. So a rasp-pi kernel only could

boot on Rasp-pi. Lots of pound-defined and hard-coded

hw info.

• New way, device tree. A blob that describes the

hardware. Pass it in with boot loader, and kernel can use
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it to determine what hardware is available. So instead

of Debian needing to provide 100 kernels, instead just

1 kernel and 100 device tree files that one is chosen at

install time.

• Does mean that updating to a new kernel can be a pain.
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Detecting Devices

There are many ways to detect devices

• Guessing/Probing – can be bad if you guess wrong and

the hardware reacts poorly to having unexpected data

sent to it

• Standards – always knowing that, say, VGA is at address

0xa0000. PCs get by with defacto standards

• Enumerable hardware – busses like USB and PCI allow

you to query hardware to find out what it is and where
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it is located

• Hard-coding – have a separate kernel for each possible

board, with the locations of devices hard-coded in. Not

very maintainable in the long run.

• Device Trees – see next slide
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Devicetree

• Traditional Linux ARM support a bit of a copy-paste and

#ifdef mess

• Each new platform was a compile option. No common

code; kernel for pandaboard not run on beagleboard not

run on gumstix, etc.

• Work underway to be more like x86 (where until recently

due to PC standards a kernel would boot on any x86)

• A “devicetree” passes in enough config info to the kernel
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to describe all the hardware available. Thus kernel much

more generic

• Still working on issues with this.
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Booting Linux

• Bootloader jumps into OS entry point

• Set Up Virtual Memory

• Setup Interrupts

• Detect Hardware / Install Device Drivers

• Mount filesystems

• Pass control to userspace / call init (systemd?)
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• Run init scripts

• rc boot scripts, /etc/rc.local

Start servers, or “daemons” as they’re called under

Linux.

• fork()/exec(), run login, run shell

20



How a Program is Loaded on Linux

• Kernel Boots

• init started

• init calls fork()

• child calls exec()

• Kernel checks if valid ELF. Passes to loader

• Loader loads it. Clears out BSS. Sets up stack. Jumps
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to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.
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Viewing Processes

• You can use top to see what processes are currently

running

• Also ps but that’s a bit harder to use.
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