
ECE 471 – Embedded Systems
Lecture 17

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

9 October 2020

http://web.eece.maine.edu/~vweaver


Announcements

• HW#5 was due

• HW#6 will be posted, due in *two* weeks (there might

be a slight delay in getting it posted)

• Midterm is a week from Friday, the 16th

• Review on Wed

• No class Monday

1



Homework #4 Error Checking

• What do you do if there’s an error?

• Ignore it? Why could that be bad?

• Retry until it succeeds?

• Print an error message and continue?

Can you continue?

What if continuing with a bad file descriptor breaks

things?

What if printing too many error messages fills up a log,

swamps the screen, hides other errors?

2



• Good error message

Can’t be confused with valid input (airlock)

If displayed to user, make it easy to understand

• Print an error message and exit?

What if it’s a critical system?

• Crashing is almost never the right answer.

3



Homework #4 Permissions

• We haven’t really discussed Linux permissions

• List file, “user” ”group” ”all”

• drwxr-xr-x

• Often in octal, 777 means everyone access

• Devices under /dev or /sysfs might be set to only root

or superuser

• Traditional UNIX /dev you can set with chown (to set

user/group) or chmod (to set permissions)

• Group under /etc/group, so gpio group

4



• Having to manually set permissions a pain. Program

called udev that does it automatically when a device

driver is configured. It might take a few ms to notice

• Why is it better than using “sudo”? Why might I as

grader not want to run your code using “sudo” if I can

avoid it?

• How to set up sudo? /etc/sudoers file

5



Homework #4 Review

• Blink frequency. Remember, 1Hz is 500ms on / 500ms

off

not 500us, not 1s

• Still grading the switch part.

6



Homework #4 Question

• 5.a Why usleep? Less resources (not busy

sleeping), cross-platform (not speed-of-machine-

dependent), compiler won’t remove, other things can

run, power saving.

Be careful saying accuracy! usleep() guarantees a

minimum time delay, but it is best effort how long

the delay actually is. So if you really need *exact* time

delays you probably want some other interface.

• 5.b Layer of abstraction. In this case, not having

7



to bitbang the interface or know low-level addresses,

portability among machines.

ability to run WiringPi is not a benefit

• 6.a Machines from dmesg: 2020: Pi4 (7) Pi3 1.2 (4)

pi3b+ (6) dmesg a good place to find error messages,

etc.
• 6.b Kernel versions. Current Linus kernel (upstream) is

5.9 /5.9-rc8
Uname syscall, what the parts mean

Linux linpack-test 4.14.50-v7+ #1122 SMP Tue Jun 19 12:26:26 BST 2018 armv7l GNU/Linux\\

Linux orvavista 4.5.0-2-amd64 #1 SMP Debian 4.5.5-1 (2016-05-29) x86_64 GNU/Linux\\

2020: 4.14.79 (1) 4.19.50 (1) 4.19.66 (3) 4.19.75 (1)

8



4.19.97 (3) 5.4.51 (7)

• 6.c. Disk space. Why -h? Human readable. what does

that mean? Why is it not the default? At least Linux

defaults to 1kB blocks (UNIX was 512) Lots of large

disks.

9



HW#4 – Debouncing

• Tricky as we are detecting levels not edges here

• Reading and only reporting if you say have 3 in a row of

save val

• Reading, sleeping a bit, then report the value after has

settled

• Just sleeping a long time after any change? If a short

glitch happens this might misreport.

• Sleep too long, might miss events

• Debounce if using interrupt-driven code

10



In that case debouncing might be to ignore repeated

changes if they happen too close together

11



How a Program is Loaded on Linux

• Kernel Boots

• init started (systemd)

• init calls fork()

• child calls exec()

• Kernel checks if valid ELF. Passes to loader

• Loader loads it. Clears out BSS. Sets up stack. Jumps

12



to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.

13



Viewing Processes

• You can use top to see what processes are currently

running

• Also ps but that’s a bit harder to use.

14



Homework 6 – Background

• You have two weeks to do this one

• Handout should cover most of it

• bit-banging i2c

• Why not bitbang everything? A pain. Hardware does it

for you. Hardware even does more, can often buffer or

DMA, timing more exact.

• Why might you want to bitbang i2c? Only have one i2c

bus? Or no i2c bus, only GPIOs? kernel has bitbang

driver

15



• Tell my boring frontpath i2c-bitbang story

16



Homework 6 – Implementation

• Use the gpio interface to drive the SDA and SCL lines

to manually run the 4x7 LED display

• Still easier than full bitbang, where you’d have to write

to various i/o addresses

• A lot of the code is provided for you, follow the directions

• How do you set SDA low?

Set output to ’0’

• How do you set SDA high?

Open collector, need to let it float, not be driven 1

17



The Linux interface lets you select a line to be open-drain

and when you do that, when you output a 1 it knows to

switch the pin to “input” which lets the line float

18



Homework 6 – Multiple Files

• This homework has the compiler compiling multiple small

files and then linking them together.

• Why do this? Easier to edit smaller files, easier if

collaborating with others, lets you share code without

cut and pasting

• gcc -c file.c creates file.o

• Link a number of files together

gcc -o executable file1.o file2.o file3.o

• This is how you create libraries (static just a matter of

19



ar, dynamic are a bit more complicated)

• All global functions/vars are exported, unless you declare

them static

• How do you know how to call functions in other files?

Need to pre-declare prototype so the compiler knows

how to set up the registers before calling. Traditionally

with C this is done in a .h header file

• Include files with #include "file.h". You may also

have seen angle brackets, what is the difference?

• By default all functions/global vars are exported. How

can you specify to only be visible in own file? Use the

20



static keyword.

21


