
ECE 471 – Embedded Systems
Lecture 19

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

19 October 2020

http://web.eece.maine.edu/~vweaver


Announcements

• HW#6 was not posted yet. Maybe delayed.

• Info on project coming soon

• Midterms not quite graded yet

• No class on Wednesday due to Engineering Career Fair

1



Real Time Constraints

What are real time constraints?

• Time deadlines that hardware needs to respond in.

• Goal not performance, but response time

2



Types of Real Time Constraints

• Hard – miss deadline, total failure of system. Minor or

major disaster (people may die?)

Antilock brakes?

• Firm – result no longer useful after deadline missed

lost frames in video, missed frames in video game

• Soft – results gradually less useful as deadline passes.

Caps lock LED coming on?

3



Uses of Real Time

Who uses realtime?

• Timing critical situations. Cars, medical equipment,

space probes, etc.

• Industrial automation. SCADA. Stuxnet.

• Musicians, important to have low-latency when recording

• High-speed trading

4



Why isn’t everything Real-time?

• It’s hard to do right

• It’s expensive to do right

• It might take a lot of testing

• It’s usually not necessary

5



Constraints depend on the Application

Try not to over-think things.

Can almost always come up with a scenario where a soft

constraint could become hard.

For example: Unlocking a car door taking an extra

second? Not hard real-time, except maybe if your car is

about to crash and you need to escape quickly.

6



What can cause problems with real-time?

Sources of “Jitter”

• Interrupts. Taking too long to run; being disabled (cli)

• Unpredictable nature of modern CPUs (see following

slide).

• Operating system. Scheduler. Context-switching.

• Dynamic memory allocation, garbage collection.

• Slow/unpredictable hardware (hard disks, network

access)

• Memory refresh (LPDDR burst refresh can avoid this a

7



bit)

8



Worst Case Behavior – Hardware

• Easier on older and simple hardware

• Old chips like 6502 – fixed clock, each instruction

takes an exact number of cycles. Deterministic. With

interrupts disabled you can perfectly predict how long

code will take.

Steve Wozniak famously wrote disk firmware on 6502

that more or less cycle-accurate bit-banged stepper

motors.

Also video games, racing the beam.

9



• Modern hardware more complex:

◦ Memory accesses unpredictable with caches – may take

2 cycles or 1000 cycles

◦ Interrupts can take unknown amount of time

◦ Page faults

◦ Branch prediction

◦ Power-save may change clock frequency

◦ Even in manuals instructions can take a range of cycles

10



Do a video game keyboard latency example

See Dan Luu’s Paper “Computer Latency: 1977-2017”

https://danluu.com/input-lag/

• 1977 computers can have less latency to getting keypress

on screen than fastest 2010s computers

• Having a fast processor only helps so much

• Slow hardware (keyboards, LCD displays), layers of

abstraction in the way

11

https://danluu.com/input-lag/


• Apple II (1977) 30ms, modern machines 60-100+ms

12


