
ECE 471 – Embedded Systems
Lecture 21

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

26 October 2020

http://web.eece.maine.edu/~vweaver

Announcements

• Project handout will be posted to website

• Midterm grades wil be sent out

1

HW#7 Followup

2

SPI Sample Code Review

#d e f i n e LENGTH 3

i n t r e s u l t ;

s t r u c t s p i i o c t r a n s f e r s p i ;

u n s i g n e d c h a r d a t a o u t [LENGTH]={0 x1 , 0 x2 , 0 x3 } ;

u n s i g n e d c h a r d a t a i n [LENGTH] ;

/* k e r n e l doesn ’ t l i k e i t i f s t r a y v a l u e s , even i n padd ing */

memset(& s p i , 0 , s i z e o f (s t r u c t s p i i o c t r a n s f e r)) ;

/* Setup f u l l =d u p l e x t r a n s f e r o f 3 b y t e s */

3

s p i . t x b u f = (u n s i g n e d l o n g)& d a t a o u t ;

s p i . r x b u f = (u n s i g n e d l o n g)& d a t a i n ;

s p i . l e n = LENGTH;

s p i . d e l a y u s e c s = 0 ;

s p i . s p e e d h z = 100000 ;

s p i . b i t s p e r w o r d = 8 ; s p i . c s c h a n g e

= 0 ;

/* Run one f u l l =d u p l e x t r a n s a c t i o n */

r e s u l t = i o c t l (s p i f d , SPI IOC MESSAGE (1) , &s p i) ;

4

Zeroed Structs in Kernel ABI

• Why is the kernel erroring out if the empty “pad” bit

not zero?

◦ Forward compatibility. You want to make sure that

any empty bits stay that way.

◦ If you want to add new functionality in the future you

have to ensure reserved bits are all zero, otherwise old

programs will do unexpected things (or break) if they

had been accidentally setting those bits.

5

◦ So why were the pad bits non-zero? Bad luck. Local

struct allocated on the stack, so if there were old values

on the stack the pad value could be non-zero.

6

Floating Point in C

• Converting int to floating point:

i n t v a l u e =45;

d o u b l e temp ;

temp=v a l u e ; // works

temp=(f l o a t) v a l u e ; // c a s t s make t he c o n v e r s i o n e x p l i c i t

// but can p o t e n t i a l l y h i d e bugs

• float vs double

7

float is 32-bit, double 64-bit

• Constants 9/5 vs 9.0/5.0

The first is an integer so just “1”. Second is expected

1.8.

• Printing. First prints a double. Second prints a double

with only 2 digits after decimal.

p r i n t f (”% l f \n ” , temp) ;

p r i n t f (”%.2 l f \n ” , temp) ;

8

Project Preview

• The handout for this has been posted to the course

website.

• Can work in groups

• Embedded system (any type, not just Pi)

• Written in any language (asm, C, python, C++, Java,

etc.)

• Do some manner of input and some manner of output

using the various capabilities we discussed

• I have a large amount of i2c, spi, and other devices that

9

you can borrow if you want to try anything interesting.

• Past projects: games, robots, weather stations, motor

controllers, music visualization, etc.

• Will be a final writeup, and then a short presentation and

demo in front of the class during last week of classes.

• Can compliment another project, but must have some

original code

10

Can you get Real-Time on Modern
Systems?

• Modern hardware does make it difficult with potentially

unpredictable delay

• Some machines provide special, deterministic co-

processors to help (PRUs on the beaglebone)

• You can still attempt to get real-time by coding your OS

carefully

11

Real Time Operating Systems

How do RTOSes differ from regular OSes?

• Low-latency of OS calls (reduced jitter)

• Fast/Advanced Context switching (especially the

scheduler used to pick which jobs to run)

• Often some sort of job priority mechanism that allows

high-importance tasks to run first

12

Software Worst Case – Context Switching

• OS provides the illusion of single-user system despite

many processes running, by switching between them

quickly.

• Switch rate in general 100Hz to 1000Hz, but can vary

(and is configurable under Linux). Faster has high

overhead but better responsiveness (guis, etc). Slower

not good for interactive workloads but better for long-

running batch jobs.

13

• You need to save register state. Can be slow, especially

with lots of registers.

• When does context switch happen? Periodic timer

interrupt. Certain syscalls (yield, sleep) when a process

gives up its timeslice. When waiting on I/O

• Who decided who gets to run next? The scheduler.

• The scheduler is complex.

• Fair scheduling? If two users each have a process, who

runs when? If one has 99 and one has 1, which runs

14

next?

• Linux scheduler was O(N). Then O(1). Now O(log N).

Why not O(N 3)

15

Common OS scheduling strategies

• Event driven – have priorities, highest priority pre-empts

lower

• Time sharing – only switch at regular clock time, round-

robin

16

Scheduler example

• Simple: In order the jobs arrive

• Static: (RMS) Rate Monotonic Scheduling – shortest

first

• Dynamic: (EDF) Earliest deadline first

• Three tasks come in

◦ A: finish in 10s, 4s long

◦ B: finish in 3s, 2s long

◦ C: finish in 5s, 1s long

• In order they arrive, aaaabbccc bad for everyone

17

• RMS: cbbbaaaa works

• EDF: bbbcaaaa also works

• Lots of information on various scheduling algorithms

18

