
ECE 471 – Embedded Systems
Lecture 24

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

2 November 2020

http://web.eece.maine.edu/~vweaver

Announcements

• Don’t forget HW#8

• Keep thinking about projects, topic due Friday.

• Class on Wednesday will start off with a 10-minute

research talk doubled up with ECE100

• They just released the Raspberry Pi 400

1

HW#8 – C string review

String manipulation is famously horrible in C. There are

many ways to get the ”YES” and ”t=24125” values out

of the text file for HW#8. Any you choose is fine.

2

Method One – Read String Using fscanf()

• The “stream” file interface in C lets you used buffered

I/O and is slightly higher level than open()/close()

• Open a file with: FILE *fff; fff=fopen("filename","r");

• close a file with fclose(fff);

• you can read a string using fscanf(fff,"%s",string);

see details below

• There are multiple ways to read files into a string in C

Assume char string[1024];

◦ fd=open("filename",RD ONLY);

3

read(fd,string,1023); close(fd);

◦ FILE *fff; fff=fopen("filename","r"); fread(buffer,size,count,fff);

fclose(fff)

You can also use fgets(buffer,size,fff);

◦ Advanced: use mmap()

• C strings

◦ In C, characters are NUL (0) terminated character

arrays (usually 8-bit bytes). Usually ASCII or UTF8

◦ Other languages might be unicode, 16-bit, wchar

◦ You can use either pointer or array access to get a

value (string[0] is the same as *string)

4

◦ Note that double quotes indicate a string, while single

quotes indicate a single character

◦ It is very easy to accidentally go off the end of a string

and corrupt memory

◦ Alternatives? Fancy libraries? Pascal strings (where

first char is the length?)

◦ Always be sure your strings are terminated, otherwise

bad things can happen (and not all C string

manipulation functions do this properly, see strcpy(),

strncpy(), strlcpy()

• Finding a location / substring in a larger string

5

◦ If you trust the Linux kernel developers to keep a

“stable ABI” you can assume the temperature will

always be a fixed offset and hard code it. This can be

a bit dangerous.

◦ You can use the scanf() series of functions to parse

the string (either fscanf() directly, or sscanf() on the

string)

One helpful hint, putting a ‘*’ in a conversion (like

%*s tells scanf to read in the value but ignore it.

◦ You can use the strstr() search for substring C-

library function, maybe in conjunction with strtok()

6

◦ You can manually parse the array.

Using array syntax, something like:

i=0; while(string[i]!=0) {
if (string[i]==’t’) break; i++ }
Using pointer syntax, something like:

char *a; a=string; while(*a!=0) {
if (*a==’t’) break; a++; }

• Pointing into a string

◦ If you searched for ”t=” you might now have a pointer

a to something like ”t=12345”. To point to 12345

you can just add 2 to the string pointer.

7

◦ printf("%s\n",string+2);
◦ printf("%s\n",&string[2]);
• Converting string to decimal or floating point

◦ atoi() converts string to integer. What happens on

error?

◦ strtol() will give you an error but is more complex

to use

◦ atof() and strtod() will do floating point

• Comparing strings

◦ Can you just use ==? NO!

◦ Be careful using strcmp() (or even better, strncmp()

8

they have unusual return value

less than, 0 or greater than depending. 0 means match

So you want something like

if (!strcmp(a,b)) do something();

• Other file I/O: fgetc()

9

Computer Security
and why it matters for embedded systems

• Most effective security is being unconnected from the

world and locked away in a box. Until recently most

embedded systems matched that.

• Modern embedded systems are increasingly connected

to networks, etc. Embedded code is not necessarily

prepared for this.

• Internet of Things

10

Big Event Where This Matters

• Election tomorrow

• Places with Electronic Voting Booths

• Have been found trivial to hack. Running windows, with

exposed USB connector.

• How did researchers get access to them.

• Attacks often have to be local unless you happen to hack

main database

11

• Paper ballots tend to be more secure

• Social Engineering issues.

• What about vote-by-mail? Internet voting

12

The Problem

• Untrusted inputs from user can be hostile.

• Users with physical access can bypass most software

security.

13

What can an attacker gain?

• Fun / Mischief

• Profit

• A network of servers that can be used for illicit purposes

(SPAM, Warez, DDOS)

• Spying on others (companies, governments, etc)

14

Sources of Attack

• Untrusted user input

Web page forms

Keyboard Input

• USB Keys (CD-ROMs)

Autorun/Autostart on Windows

Scatter usb keys around parking lot, helpful people plug

into machine.

• Network

15

cellphone modems

ethernet/internet

wireless/bluetooth

• Backdoors

Debugging or Malicious, left in place

• Brute Force – trying all possible usernames/passwords

16

Types of Compromise

• Crash

“ping of death”

• DoS (Denial of Service)

• User account compromise

• Root account compromise

• Privilege Escalation

17

• Rootkit

• Re-write firmware? VM? Above OS?

18

Unsanitized Inputs

• Using values from users directly can be a problem if

passed directly to another process

• If data (say from a web-form) directly passed to a UNIX

shell script, then by including characters like ; can issue

arbitrary commands: system("rm %s\n",userdata);

• SQL injection attacks; escape characters can turn

a command into two, letting user execute arbitrary

SQL commands; xkcd Robert ’); DROP TABLE

Students;--

19

Buffer Overflows

• User (accidentally or on purpose) copies too much data

into a fixed sized buffer.

• Data outside expected area gets over-written. This can

cause a crash (best case) or if user carefully constructs

code, can lead to user taking over program.

20

Buffer Overflow Example
void function(int *values , int size) {

int a[10];

memcpy(a,values ,size);

return;

}

Maps to
push {lr}

sub sp ,#44

memcpy

add sp ,#44

pop {pc}

21

a[0]

a[1]

a[2]

a[3]

a[4]

a[6]

a[5]

a[7]

a[8]

a[9]

link register

Stack pointer before entry

Stack pointer after prolog

A value written to a[11] overwrites the saved link register.

If you can put a pointer to a function of your choice there

you can hijack the code execution, as it will be jumped to

at function exit.

22

Mitigating Buffer Overflows

• Extra Bounds Checking / High-level Language (not C)

• Address Space Layout Randomization

• Putting lots of 0s in code (if strcpy is causing the

problem)

• Running in a “sandbox”

23

Dangling Pointer / Null Pointer
Dereference

• Typically a NULL pointer access generates a segfault

• If an un-initialized function pointer points there, and

gets called, it will crash. But until recently Linux allowed

users to mmap() code there, allowing exploits.

• Other dangling pointers (pointers to invalid addresses)

can also cause problems. Both writes and executions can

cause problems if the address pointed to can be mapped.

24

Privilege Escalation

• If you can get kernel or super-user (root) code to jump

to your code, then you can raise privileges and have a

“root exploit”

• If a kernel has a buffer-overrun or other type of error and

branches to code you control, all bets are off. You can

have what is called “shell code” generate a root shell.

• Some binaries are setuid. They run with root privilege

but drop them. If you can make them run your code

25

before dropping privilege you can also have a root exploit.

Tools such as ping (requires root to open raw socket),

X11 (needs root to access graphics cards), web-server

(needs root to open port 80).

26

Information Leakage

• Can leak info through side-channels

• Detect encryption key by how long other processes take?

Power supply fluctuations? RF noise?

• Timing attacks

• Meltdown and Spectre

27

Finding Bugs

• Source code inspection

• Watching mailing lists

• Static checkers (coverity, sparse)

• Dynamic checkers (Valgrind). Can be slow.

• Fuzzing

28

