ECE 471 — Embedded Systems
Lecture 25

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

4 November 2020


http://www.eece.maine.edu/~vweaver

Announcements

e Don't forget HW#8
e Don't forget Project topics

e First 10 minutes of class is research presentation along
with ECE100



Types of Security Compromise

Crash

“ping of death”

DoS (Denial of Service)

User account compromise

Root account compromise

Privilege Escalation

Rootkit

Re-write firmware? VM? Above OS7?




Unsanitized Inputs

e Using values from users directly can be a problem if

nassed directly to another process

e If data (say from a web-form) directly passed to a UNIX
shell script, then by including characters like ; can issue
arbitrary commands: system("rm %s\n",userdata) ;

e SQL injection attacks; escape characters can turn
a command into two, letting user execute arbitrary
SQL commands: xkcd Robert ’); DROP TABLE
Students;—-

-y 3



Buffer Overflows

e User (accidentally or on purpose) copies too much data
into a fixed sized buffer.

e Data outside expected area gets over-written. This can
cause a crash (best case) or if user carefully constructs
code, can lead to user taking over program.



Buffer Overflow Example

void function(int *values, int size) {
int a[10];

memcpy (a,values ,size) ;

return;

Maps to

push {1r}
sub sp,#44

memcpy

add sp,#44
pop {pc}



-<—— Stack pointer before entry

link register

a[9]
a[8]
a[7]
a[6]
a[5]
a[4]
a[3]
a[2]
a[1]
a[o0] ~<—— Stack pointer after prolog

|

A value written to a[11] overwrites the saved link register.
If you can put a pointer to a function of your choice there
you can hijack the code execution, as it will be jumped to
at function exit.

-y 6



Mitigating Buffer Overflows

e Extra Bounds Checking / High-level Language (not C)
e Address Space Layout Randomization

e Putting lots of Os in code (if strcpy is causing the
problem)

e Running in a “sandbox”



Dangling Pointer / Null Pointer
Dereference

e Typically a NULL pointer access generates a segfault

e If an un-initialized function pointer points there, and
gets called, it will crash. But until recently Linux allowed
users to mmap() code there, allowing exploits.

e Other dangling pointers (pointers to invalid addresses)
can also cause problems. Both writes and executions can
cause problems if the address pointed to can be mapped.

-y 8



Privilege Escalation

e If you can get kernel or super-user (root) code to jump
to your code, then you can raise privileges and have a
“root exploit”

e If a kernel has a buffer-overrun or other type of error and
branches to code you control, all bets are off. You can
nave what is called “shell code” generate a root shell.

e Some binaries are setuid. They run with root privilege
but drop them. If you can make them run your code

-y 5



before dropping privilege you can also have a root exploit.
Tools such as ping (requires root to open raw socket),
X11 (needs root to access graphics cards), web-server

(needs root to open port 80).

10



Information Leakage

e Can leak info through side-channels

e Detect encryption key by how long other processes take?
Power supply fluctuations? RF noise?

e Timing attacks

e Meltdown and Spectre

/Y 11



Finding Bugs

e Source code inspection

e Watching mailing lists

e Static checkers (coverity, sparse)

e Dynamic checkers (Valgrind). Can be slow.

e Fuzzing

12



