
ECE 471 – Embedded Systems
Lecture 26

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

6 November 2020

http://web.eece.maine.edu/~vweaver


Announcements

• Don’t forget project topics

• HW#9 will be posted, due in two weeks

1



HW#9 Info

• Read temperature probe, print temp on i2c display

• Re-use code from past assignments

• Follow spec on functions to put code in, how to print

results

• Testing: 4 cases described, and set up to allow unit tests

2



HW#7 Review – Code

• Follow directions: temp probe channel 2

• Why did we memset the structure before filling in the

values?

• Converting 2 bytes into one. Be sure to mask

• What is the max frequency? someone setting to 500kHz

by accident, a few degrees different. Data sheet unclear

• Don’t just cut/paste all code in. Don’t ioctl(spi fd,

SPI IOC RD MAX SPEED HZ, &f); what does that do?

• Errors: exiting. Not print plausibly real invalid values.

3



In our case, printing 0V when actually 3.3V not an issue,

but imagine if it were 10,000V and you print 0V

4



HW#7 Review – Questions

• Anti-lock brakes hard/soft/firm realtime?

Hard. If things go wrong would be disaster

• Stereo change channel hard/soft/firm realtime?

Soft. Prefer it not to be late, but still want to happen

• Video coming in at 60fps decoding?

Firm, if frame decoded late it is useless

• Disadvantage of SPI?

More wires, no standard, no errors

• Advantage of SPI?

5



Lower Power, Full Duplex, No max speed

• TMP36 on end of cable.

Voltage Drop, Noise?

Datasheet has two options, convert to current, or an

extra resistor.

• Minimum frequency of 10kHz or results invalid. Maybe

cannot go this fast if bitbanging via GPIO. Also context

switch in middle, Linux not realtime?

6



HW#7 Review – Linux “fun”

• /dev/null

• /dev/full

• /dev/zero, holes in files

• /dev/random – give explanation on sources of

randomness (entropy), pseudo-randomness, etc.

• Mention related DOS/Windows compatibility issue

7



Buffer Overflows

• User (accidentally or on purpose) copies too much data

into a fixed sized buffer.

• Data outside expected area gets over-written. This can

cause a crash (best case) or if user carefully constructs

code, can lead to user taking over program.

8



Buffer Overflow Example
void function(int *values , int size) {

int a[10];

memcpy(a,values ,size);

return;

}

Maps to
push {lr}

sub sp ,#44

memcpy

add sp ,#44

pop {pc}

9



a[0]

a[1]

a[2]

a[3]

a[4]

a[6]

a[5]

a[7]

a[8]

a[9]

link register

Stack pointer before entry

Stack pointer after prolog

A value written to a[11] overwrites the saved link register.

If you can put a pointer to a function of your choice there

you can hijack the code execution, as it will be jumped to

at function exit.

10



Mitigating Buffer Overflows

• Extra Bounds Checking / High-level Language (not C)

• Address Space Layout Randomization

• Putting lots of 0s in code (if strcpy is causing the

problem)

• Running in a “sandbox”

11



Dangling Pointer / Null Pointer
Dereference

• Typically a NULL pointer access generates a segfault

• If an un-initialized function pointer points there, and

gets called, it will crash. But until recently Linux allowed

users to mmap() code there, allowing exploits.

• Other dangling pointers (pointers to invalid addresses)

can also cause problems. Both writes and executions can

cause problems if the address pointed to can be mapped.

12



Privilege Escalation

• If you can get kernel or super-user (root) code to jump

to your code, then you can raise privileges and have a

“root exploit”

• If a kernel has a buffer-overrun or other type of error and

branches to code you control, all bets are off. You can

have what is called “shell code” generate a root shell.

• Some binaries are setuid. They run with root privilege

but drop them. If you can make them run your code

13



before dropping privilege you can also have a root exploit.

Tools such as ping (requires root to open raw socket),

X11 (needs root to access graphics cards), web-server

(needs root to open port 80).

14



Information Leakage

• Can leak info through side-channels

• Detect encryption key by how long other processes take?

Power supply fluctuations? RF noise?

• Timing attacks

• Meltdown and Spectre

15



Finding Bugs

• Source code inspection

• Watching mailing lists

• Static checkers (coverity, sparse)

• Dynamic checkers (Valgrind). Can be slow.

• Fuzzing

16



Computer Security

17



Social Engineering

• Often easier than actual hacking

• Talking your way into a system

• Looking like you know what you are doing

• “The Art of Deception”

18



Worrisome embedded systems

• Backdoors in routers.

• Voting Machines, ATMs

• pacemakers

• Rooting phones

• Rooting video games

• Others?

19



Voting Machines

• Maine has paper ballot — not too bad

• Often are old and not tested well (Windows XP, only

used once a year)

• How do researchers get them to test? e-bay?

• USB ports and such exposed, private physical access

• Can you trust the software? What if notices it is Election

Day and only then flips 1/10th the vote from Party A to

Party B. Would anyone notice? What if you have source

code?

20



• What if the OS does it. What if Windows had code that

on Election Day looked for a radio button for Party A

and silently changed it to Party B when pressed?

• OK you have and audit the source code. What about

the compiler? (Reflections on Trusting Trust). What

about the compiler that compiled the compiler?

• And of course the hardware, but that’s slightly harder to

implement but a lot harder to audit.

21


