
ECE471: Embedded Systems – Homework 10
Realtime Linux / Power

Due: Friday 3 December 2021, 11:00am

For this assignment there is no coding. You will need to download the hw10 source to build and run the tests,
but please put all of your question answers into a text, pdf, or word document which you then e-mail to me.

1. Real Time Linux
For this you will need to connect GPIO24 to GPIO25 on your Pi. If you have a female-female con-
nector you can use that, alternately use a breadboad and the wires from previous assignments. See
Figure 1 and Table 1 to locate the relative positions of GPIO24 and GPIO25.

Camera

Pin1 Pin2

Composite

Audio

HDMI

Power

Pin25 Pin26

Ethernet

USB

Audio/Video

Pin1 Pin2

Ethernet

USB USB

Power

HDMI

Audio/Video

Pin1 Pin2

Power

HDMI

HDMI

USB USB
Ethernet

Figure 1: Location of header on Raspberry Pi Model B, Models B+/2/3, Model 4B

2. Get the GPIO latency measurements (5 points)

(a) Run make to compile the code.

(b) The code works by starting two threads using the Linux pthreads library. One thread every 100ms
sets GPIO24 high then low again. The other thread spins in a tight loop reading GPIO25 waiting
for the line to go high, and when it does it records the time.
The time is recorded using the clock_gettime(CLOCK_REALTIME, &timespec); high-
resolution timer on Linux. In theory this timer can have down to 1ns resolution but in practice
it’s not quite that good.
The measure program runs the experiment multiple times (10 by default), then reports the high,
low, and average latency. It takes a command line argument specifying how many times to run.

(c) Run ./measure 100 to gather results from 100 runs.

Questions: What is the min/max/average?
If you were designing an embedded system, what would be a “safe” value you could pick for
how quickly GPIO25 could respond to the line going from low to high?



Table 1: Raspberry Pi Header Pinout
3.3V 1 2 5V

GPIO2 (SDA) 3 4 5V
GPIO3 (SCL) 5 6 GND

GPIO4 (1-wire) 7 8 GPIO14 (UART_TXD)
GND 9 10 GPIO15 (UART_RXD)

GPIO17 11 12 GPIO18 (PCM_CLK)
GPIO27 13 14 GND
GPIO22 15 16 GPIO23

3.3V 17 18 GPIO24
GPIO10 (MOSI) 19 20 GND
GPIO9 (MISO) 21 22 GPIO25

GPIO11 (SCLK) 23 24 GPIO8 (CE0)
GND 25 26 GPIO7 (CE1)

ID_SD (EEPROM) 27 28 ID_SC (EEPROM)
GPIO5 29 30 GND
GPIO6 31 32 GPIO12

GPIO13 33 34 GND
GPIO19 35 36 GPIO16
GPIO26 37 38 GPIO20

GND 39 40 GPIO21

(d) Now run the ./load program. This will start up 10 threads of busy work, which should put a
heavy load on all the cores in the system.
Let this program run in the background. One way of doing this is pressing control-Z, then typing
bg. Alternately you can open another connection/terminal on your pi and just do the next step in
another window.
Run the top tool and verify that load is running. It should be shown as taking 400% of the
CPU (As your pi probably has 4 cores) and the “load average” on the system should be gradually
approaching 10.
Now run ./measure 100 again.
Questions: Report the min/max/average. How is it different than last time? How might this
change your worst-case latency plans on a real-time system?

(e) Keep load running in the background, but this time run
sudo chrt -r 70 ./measure 100
This tells the Linux scheduler you want to run the measure program with a real-time priority of
70 (higher is better).
Question: What is the min/max/average in this case?
When we ran the chrt command we needed to do it as root (with sudo). This is because normal
users are not allowed to set real time permissions by default. Why might you not want regular
users to give high-priority real-time permissions to their programs?

(f) Once you are done, you can kill the load program either with control-C, or if you put it in the
background, use fg to bring it back then press control-C.

2



3. Something Cool (optional)

The something cool is optional this time, but you can get extra credit for completing it.

• (Medium) Modify the code so in addition to average it also calculates the standard deviation.
Report your results.

• (Hard) Modify the code to print all 100 values, then plot a frequency graph showing the timing
delays. Include the graph with your submission.

Power and Energy (5pts)

Table 2: OpenBLAS HPL N=10000 (Matrix Multiply)
Machine Processor Cores Frequency Idle Power Load Power Time Total Energy

Raspberry Pi 2 Cortex-A7 4 900MHz 1.8W 3.4W 454s 1543J
Dragonboard Cortex-A53 4 1.2GHz 2.4W 4.7W 241s 1133J

Raspberry Pi 3 Cortex-A53 4 1.2GHz 1.8W 4.3W 178s 765J
Jetson-TX1 Cortex-A57 4 1.9GHz 2.1W 13.4W 47s 629J

Macbook Air Broadwell 2 1.6GHz 10.0W 29.1W 14s 407J

4. Table 2 shows the energy use of various machines when doing a large Matrix-Matrix multiply.

(a) Which machine has the lowest under-load power draw?

(b) Which machine consumes the least amount of energy?

(c) Which machine computes the result fastest?

5. Consider a use case with an embedded board taking a picture once every 60 seconds and then perform-
ing a matrix-multiply similar to the one in the benchmark (perhaps for image-recognition purposes).
Could all of the boards listed meet this deadline?

6. Assume a workload where a device takes a picture once a minute then does a large matrix multiply (as
seen in Table 1). The device is idle when not multiplying, but under full load when it is.

(a) Over an hour, what is the total energy usage of the Jetson TX-1?

(b) Over an hour, what is the total energy usage of the Macbook Air?

3



7. Given your answer in the previous question, which device would you choose if you were running this
project off of a battery?

Submitting the Assignment
Please put your answers to questions 2 - 7 in some sort of document (text, pdf, doc) and *e-mail* it to me
by the deadline.

4


