
ECE 471 – Embedded Systems
Lecture 6

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

13 September 2021

http://web.eece.maine.edu/~vweaver


Announcements

• HW#2 was posted

1



Homework #1 – Characteristics of
Embedded System

• embedded inside – sometimes hard to know. Is a raw

pi one? Pi used as desktop? Pi used as retro-pi? Pi

controlling a 3D printer?

Lack of being able to update not necessarily the same

• resource constrained

• dedicated purpose

• lots of I/O

• real-time

2



Homework #1 – Identifying an Embedded
System

• Be decisive with your answer, and be specific with your

reasoning

• iPhone

real time doesn’t necessarily mean quick-response, or

FLOPS

updatable not a characteristic

• Toothbrush is actual specs I came across

• Real-Time Confusion: we will discuss this more in future,

3



for example Just turning off the motor, and it takes an

extra 1/2s is not really considered a real time thing. No

one dies, no hardware destroyed, just mild annoyance

if noticed at all. Now if somehow it had to keep the

waveform to H-bridge exact within 1ms or the motor

would overheat and catch on fire, that could be a real-

time issue.

• Thermostat

• Low-cost is complicated. Something like a desktop

might be optimized for cost extremely, while a one-off

4



embedded system might not, and in fact might be over-

engineered (like a space probe) because has to operate

in tough conditions.

• Low-power, again, this can be part of resource

constrained but be sure to explain

• Operating system?

Can have an OS and still be considered embedded.

5



Homework #1 – Bits

• ARM1176 is generally considered 32-bits

• ARMv8 is generally considered 64-bits

• 6502 generally considered 8 bits

• There are people who will have long drawn-out internet

arguments about the bitness of old systems

6



Homework #1 – ASIC vs ucontroller

• cost/power. Depends a lot on numbers made, process,

and how well designed it is.

• Could be lower-cost/faster speed, but not necessarily.

Why bother then? Cost?

• Extra hardware overhead? ASIC mostly just flip flops

and gates. SoC internally a lot more, but these days not

much else is needed.

• More secure? Can you reverse engineer an ASIC?

7



Documentation on Linux commands

• Use man command where command is what you are

interested in

• Use man ls to see how to use ls

• Also useful for functions man -a printf or random

stuff man ascii

8



Using the Pi for this Class – Two
Challenges

• Getting to the point you can log in

• Getting files onto and off of the board. (Definitely

needed for homework)

9



Installing Linux

• Any Linux fine, I typically use Raspbian

Using the same that I do is easiest and I can more easily

help

• Easiest way is to buy SD card with image pre-installed

Also can get NOOBS which will give you the option to

select from a variety of images via menu (allowing to

install Raspbian)

• If starting with a blank SD card,

10



https://www.raspberrypi.org/downloads/

has good step by step instructions for getting an image

and putting it on a card for a variety of operating

systems.

Warning: it’s a large download (900MB?) and takes a

while to write to SD (which is slow)

dd on Linux, be sure to get right partition

11

https://www.raspberrypi.org/downloads/


Booting Linux

• Why called booting? Bootstrapping? Pull oneself up by

own bootstraps? Meant to do something impossible

• Easiest if you have a USB keyboard and HDMI display

connected.

◦ Put SD card in

◦ Hook up input/output (see later)

◦ Plug in the USB power adapter; *NOTE* can also

draw power over serial/usb and HDMI

◦ Lights should come on and blink and should boot

12



A number of raspberries should appear and some Linux

boot messages

◦ Things can also go wrong in ways hard to troubleshoot

13



Configuring Raspberry Pi OS

• First boot a menu comes up. You probably want to do

a number of things:

◦ Expand to fill disk.

◦ Change password if you want

pi/raspberry is default

◦ Change locale— probably defaults to England giving

pound char for #. en US.UTF8, not GB

◦ change hostname?

◦ Enable ssh if you’ll be using it

14



◦ for this class, advanced options, enable i2c and spi

• You can get back to the original menu with sudo

raspi-config

• Don’t make fun of the text interface, once upon a time

it’s all we had.

15



Other Optional things you can do

• Install updates

sudo apt-get update

sudo apt-get upgrade

• Add a user account

adduser vince

• Give new user sudo access

involves text editing /etc/sudoers

16



Connecting to the Pi

• Monitor/Keyboard (Easiest)

• Network Connection

• Serial Connection

17



Monitor and Keyboard

• HDMI monitor, USB keyboard, USB mouse (optional

unless using gui)

• Need HDMI cable.

• Used to be a nice setup in the Electronics Lab but I

don’t think that exists anymore unfortunately.

• I can let you set things up in my lab if you have trouble

finding a place with USB/HDMI

18



Network/Ethernet Connection

• Ethernet cable

• Either an Ethernet port, or connect direct to PC

• If something goes wrong on boot hard to fix

• Can also try this with a wireless connector

• Can hook it onto dorm network, but need to request a

static IP. Can also direct connect between PC (configure

pi with a local address like 192.168.1.2 and set your

19



wired Ethernet on PC side to something like 192.168.1.1

and then use ssh to connect)

20



Network/netatalk

• Only works with MacOS (?)

• Some students in the past have used netatalk to connect

to their Pi and copy files

• Look for info on Raspberry Pi and “netatalk”

21



Serial Connection

• Old fashioned, but very good skill to have.

• Need USB/serial adapter

• Need another machine to hook to, with a comm program

minicom, putty

• Thankfully unlike old days don’t need specific NULL

modem cable. Still might need to set some obscure

COM port settings (BAUD, stop bits, parity) and console

TERM settings (ANSI, VT102).

22



Transferring Files

• Easiest: Putting USB key in rasp-pi

Easier on B+ (4 USB ports)

In theory the Pi should auto-mount the drive for you

May need to mount / umount by hand or be root

• Network: just use ssh/scp

• Serial: sz/rz ZMODEM

• Putting sd-card (after unpowering!) in another machine.

23



Challenge: Filesystem is in Linux format (ext4) so

Windows and Macs can’t read it by default.

24



SD Card Digression

• Why are they so slow?

• BACK UP YOUR WORK. ALL THE TIME. SD cards

corrupt easily. Why?

• SHUTDOWN CLEANLY

menu or shutdown -h now

• Try to get things done a little before the deadlines, that

way you have some time to recover if a hardware failure

does happen.

25



Using the Pi

• If using monitor/keyboard you can type startx after

logging in and getting a nice GUI interface.

• You can do many things through that, but in this class

we will use the command line for many things.

• You can select lxterm to get a terminal.

• Also if you log in over ssh or connect via serial port all

you will get is the command line.

26



Command-Line Linux

The way we did things in the old days.

Some of us still prefer the command line.

You come up in the “shell”. Default is bash, the “Bourne

Again Shell” (more computer person humor). There are

various shells available (bash, sh, zsh, csh, tcsh, ksh) and

you can select via chfn.

27



Things for Homeworks from command line

• Editing files: nano, vim, emacs, gui based, just copy

over

• Listing files (ls)

• Creating/Changing directories (mkdir, cd)

• Tab Completion

• Suspending jobs

28



• Running jobs ./hw1

• Compiling/Make

• Debugging. printf/gdb

• sudo, shutdown

• man to get manpage

29



Root Filesystem Layout

• Executables in /bin, /usr/bin

• System executables under /sbin, /usr/sbin

• Device nodes under /dev

• Config files under /etc

• Home directories under /home, also /root

• Temp Files under /tmp. Often wiped at reboot.

30



• Magic dirs under /proc, /sys

• Libraries under /lib, /usr/lib, sometimes lib64 too

• Boot files under /boot

• /usr historically only files needed for boot in /, stuff

that can be shared over network (or stored on a second

drive if your first drive was too small) would be under

/usr

• /opt often commercial software installed there

31



• /srv, /run, /var these are where server programs store

data

• /media, /mnt places to mount external disks like

memory keys and CD roms

• /lost+found where the disk checker may store lost files

it finds when fixing a disk after unclean shutdown

32



Interesting Config Files

• /etc/fstab – the filesystems to mount at boot time

• /etc/passwd – list of all users, world readable

• /etc/shadow – passwords stored here for security reasons

• /etc/hostname – name of the machine

• /etc/hosts – list of local machines, usually searched

before resorting to DNS lookup over network

33



• /etc/resolv.conf – where your nameserver address is put

• /etc/sudoers – list of users allowed to use “sudo”

• /etc/network/interfaces – on Debian the network

settings are stored here

• /etc/rc* – what gets run at boot

34



Devices

Block vs Char devices

• /dev/sd* – SCSI (hard disks)

• /dev/tty* – tty (teletype, logins, serial ports)

• /dev/zero

• /dev/full

• /dev/random , /dev/urandom

35



• /dev/loop

Network devices are an exception.

36



Interesting /proc Files

These files are not on disk, but “virtual” and created on-

the-fly by the operating system when you request them.

• /proc/cpuinfo – info on cpu

• /proc/meminfo – memory info

• Each process (running program) has its own directory

that has info about it

37



Processes

• Each program assigned its own number, a process id,

often called a “pid”

• Can list processes with ps -efa

• Also can get real-time view of what’s going on in a

system with top

• htop is a more advanced top

38



Common Commands

• ls : list files

ls -la : list long output, show all (hidden) files. on

Linux any file starting with . is hidden

ls -la /etc : list all in /etc directory

ls *.gz : show all ending in gz. * and ? are wildcards

and can be used as regular expressions.

• cd DIR : change directories (folders)

cd .. : go to parent directory

cd . : go to current directory

39



cd / : go to root directory

cd ∼ : go to home directory

• cat FILE – dump file to screen (originally used to

conCATenate files together but more commonly used to

list files)

• more / less – list contents of file but lets you scroll

through them. less more advanced version of more

• exit / logout / control-D – log out of the machine

• df / du – show disk space

40



df -h pretty-prints it

• man command – show documentation (manual) for a

command. For example man ls

• rm remove file. CAREFUL! Especially famous rm -rf.

In general on Linux you cannot undo a remove.

• cp copy file. CAREFUL! By default will overwrite the

destination without prompting you.

• mv move file. CAREFUL! Can overwite!

mv -i will prompt before overwrite

41



• tar create archive file tar cvf output.tar dir

tar xzvf output.tar.gz uncompresses a .tar.gz file

• gzip / gunzip / bzip2 / bunzip2 compress/uncompress

a file. gzip and bzip2 are two common formats, many

more exist

42



Compiler / Devel Commands

• make – build a file based on list of dependencies in

Makefile

• gcc – C compiler. Simplest something like this: gcc

-O2 -Wall -o hello hello.c

• g++ C++ gfortran Fortran

• as, ld – assembler and linker

• gdb – debugger

43



• strace – list system calls

• git – source code management

44



Other Commands

• shutdown – used to shutdown / reboot

• last – list last people to log in

• su / sudo – switch to root, run command as root

• uptime – how long machine has been up

• date – show the date

as root you can use date -s to set the date

45



• whoami – who are you

• write / wall / talk – write to other users

• finger – get info on other users

• w / who – see who is logged in

• wc – count words/bytes/lines in a file

• dmesg – print system and boot messages

• ln – link files together, sort of like a shortcut

46



ln -s goodbye.c hello.c – symbolic link. also hard

links

• dd – move disk blocks around, often used for creating

disk images

• mount / umount – mount or unmount filesystems

• mkfs.ext3 – make new filesystem

• e2fsck – filesystem check

• ifconfig / route – show and setup network config

47



• dpkg / apt-get update/upgrade/install – Debian

only package management

• ssh / scp – log into other machines, copy files remotely

• lynx – text-based web browser

• reset – clear the screen and reset settings (useful if you

accidentally cat a binary file and end up with a screenful

of garbage). Control-L also refreshes the screen

• linux logo – my program

48



Editing files

Linux and UNIX have many, many editors available. Most

famous are vi and emacs. On our board using nano might

be easiest.

• nano – a simple text editor.

nano FILENAME – edit a filename

It shows the commands you can do at the bottom. ^O

means press control-O

control-O : writes

control-X : exits

49



control-W : searches

control-\: search and replace

control-C : prints line number

50



Redirection and Pipes

• redirect to a file : ls > output

• redirect from a file : wc < output

• pipe from one command to another : ls | wc, dmesg

| less

• re-direct stderr : strace 2> output

51



Suspend/Resume

• Press control-C to kill a job

• Press control-Z to suspend a job

• Type bg to continue it in the background

• Type fg to resume it (bring to foreground)

• Run with & to put in background to start with. (ie,

mpg123 music.mp3 &).

52



Permissions

• user, group – use chgrp

• read/write/execute – use chmod

53



Shell Scripts

• Create a list of files in a dir

• Start with the shell, #/bin/sh (or perl, etc)

• Make executable chmod +x myfile

54



Command Line History

• Can press “tab” to auto-complete a command

• Can press “up arrow” to re-use previous commands

• Can use “control-R” to search for previous commands

55



Environment Variables

• env

• Varies from shell to shell.

• export TERM=vt102

• PATH, and why “.” isn’t in it. This is why you have to

run self-compiled binaries as ./blah

56


