
ECE 471 – Embedded Systems
Lecture 7

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

15 September 2021

http://web.eece.maine.edu/~vweaver

Announcements

• HW#2 due Friday

1

C Review

In past years sometimes the reason a HW assignment

didn’t work was due to using C poorly rather than

misunderstandings of the desired algorithm.

2

Loops in C

• for(i=0;i<10;i++) {}

• while(i<10) { i++; }

• do { i++; } while(i<10);

Always runs at least once

3

printf() in C

• printf()

• Lots of options, see man page

• How print an integer? printf("%d",i);

• Character? String? floating point?

printf("%c %s %f %x",c,s,f,x);

• More advanced formatting stuff

printf("%0.3f",f);

• Escape characters like percent, newlines and quotes

printf("\t \n \" \%");

4

Common C Pitfalls – Memory

• Can dynamically allocate memory with malloc() and

calloc()

• Should check returned value against NULL. What

happens if you de-reference a NULL pointer?

• Need to free() memory at end or you can leak memory

• Note at program exit the operating system will close

files/free memory

• Out of bounds memory access and double-frees can be

problem. Valgrind utility can help debug these errors.

5

Common C Pitfalls – Braces

• Missing braces

i f (a==0)

b=2;

i f (a==0)

b=2;

c =3;

6

Common C Pitfalls – equality check

• = vs ==

i f (a=0) d o s o m e t h i n g i m p o r t a n t () ;

• Never ignore warnings from the compiler!

• Some people will use if (0=a) to force an error

7

Coding Style

• How should you format your code?

• Does C have rules? Not really.

• International Obfuscated C Code Competition (IOCCC)

• Your company or open-source project might have strict

rules

• Things like how tabs vs spaces, how wide are tabs, if

curly brace goes after function declaration or line down

• Also rules about commenting style

8

Debugging – when things go wrong

• Use a debugger like gdb

◦ Compile your code with -g for debug symbols

◦ Run gdb ./hello

◦ bt backtrace, info regis gives register, disassem

disassembles, etc.

• Sprinkle printf calls

9

How Executables are Made

• Compiler generates ASM (Cross-compiler)

• Assembler generates machine language objects

• Linker creates Executable (out of objects)

10

Tools – Compiler

• takes code, usually (but not always) generates assembly

• Compiler can have front-end which generates

intermediate language, which is then optimized, and

back-end generates assembly

• Can be quite complex

• Examples: gcc, clang

• What language is a compiler written in? Who wrote the

first one?

11

Tools – Assembler

• Takes assembly language and generates machine

language

• creates object files

• Relatively easy to write

• Examples: GNU Assembler (gas), tasm, nasm, masm,

etc.

12

Tools – Linker

• Creates executable files from object files

• resolves addresses of symbols.

• Links to symbols in libraries.

• Examples: ld, gold

13

