ECE 471 — Embedded Systems
Lecture 10

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

22 September 2021

http://web.eece.maine.edu/~vweaver

Announcements

e Don't forget HW#3

HW?2 Review

e Most people seem to be accessing the Pi OK

e Be sure to follow directions!

e Put your name in the README

e [esting. How can you test? wc -1

e Watch for off-by-one errors

e Comment your code!

e Also watch out for compiler warnings! (Though each
compiler version might have different warnings)

e Error handling! especially for command line parsing

-y)

e Most C code OK.
Be sure if it says print 13 lines that you do, not 14.
Colors seem not to be a problem.
Spec! Didn't say which number to start with.

e more info on Is. Looking for man. “info" or 1s --help

e |s -a shows hidden files. Hidden files on UNIX

e Why use C7? close to hardware, easier than assembly, etc.
careful with “faster”. It often is, but give reasoning and
what you are comparing (fater than python? asm?)

ARM32 Conditional Execution

Why are branches bad?

if (x =5)
a+=2;
else
b—=2;
cmp rl, #b5
bne else
add r2,r2,#2
b done
else :

sub r3,r3,#2
done:

@ equivalent w/o branches

cmp rl, #b5
addeq r2,r2,#2
subne r3,r3,#2

ARM Instruction Set Encodings

e ARM — 32 bit encoding

e THUMB — 16 bit encoding

e THUMB-2 — THUMB extended with 32-bit instructions
o STM32L only has THUMB2
o Original Raspberry Pis do not have THUMB2
o Raspberry Pi 2/3 does have THUMB?2

e THUMB-EE — extensions for running in JIT runtime

e AARCHG64 — 64 bit. Relatively new. Completely different
from ARM32

-y 6

Recall the ARM32 encoding

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

Data Immediate
Processing \ ADD opcode
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
cond o o |00 1Opgode0 S Rn

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rd Shift Shift |Sh Rm

immb5 typ Reg

Immediate value (if immediate)

Why Code Density

e Smaller code can be better

e Lower resources: Cheaper? If you can fit more features
into smaller RAM or disk you can save money

e Faster? It depends. Modern chips are really hard to
predict, but if your processor has Caches and you can
fit better in instruction cache it can potentially speed
things up a lot

THUMB

e Most instructions length 16-bit (a few 32-bit)
e Only rO-r7 accessible normally
add, cmp, mov can access high regs
e Some operands (sp, Ir, pc) implicit
Can't always update sp or pc anymore.
e No prefix/conditional execution
e Only two arguments to opcodes
(some exceptions for small constants: add rO,r1,#1)
e 3-bit constants rather than 12-bit

-y 9

e Limited addressing modes: [rn,rm], [rn,#imm],
[pc|sp,#imm]

e No shift parameter ALU instructions

e Makes assumptions about “S” setting flags
(gas doesn’t let you superfluously set it, causing problems
if you naively move code to THUMB-2)

e new push/pop instructions (subset of ldm/stm), neg (to
negate), asr,lsl,Isr,ror, bic (logic bit clear)

/Y 10

THUMB /ARM interworking

e See print_string_armthumb.s
e BX/BLX instruction to switch mode.
Sets/clears the T (thumb) flag in status register
If target is a label, always switchmode
If target is a register, low bit of 1 means THUMB, 0
means ARM

e Can also switch modes with 1drm, 1dm, or pop with PC
as a destination

(on armv7 can enter with ALU op with PC destination)

11

e Can use .thumb directive, .arm for 32-bit.

12

e Extension of
Instructions

THUMB-2

HUMB to have both 16-bit and 32-bit

e [he 32-bit instructions are not the standard 32-bit ARM

Instructions.

e Most 32-bit ARM instructions have 32-bit THUMB-2

equivalents except ones that use conditional execution.
The it instruction was added to handle this.

e rsc (reverse subtract with carry) removed

e Most cannot have PC as src/dest

13

e Shifts in ALU instructions are by constant, cannot shift
by register like in arm32

e THUMB-2 code can assemble to either ARM-32 or

HUMB2

ne assembly language is compatible.

Common code can be written and output changed at

time of assembly.

e Instructions have “wide’ and “narrow” encoding.
Can force this (add.w vs add.n).

e Need to properly indicate “s” (set flags).
On regular THUMB this is assumed.

-y 14

THUMB-2 Coding

e See test_thumb2.s
e Use .syntax unified at beginning of code

e Use .arm or .thumb to specify mode

15

New THUMB-2 Instructions

e BFI — bit field insert

e RBIT — reverse bits

e movw/movt — 16 bit immediate loads
e [B — table branch

o IT (if/then)

e cbz — compare and branch if zero; only jumps forward

16

Thumb-2 12-bit immediates

top 4 bits 0000 -- 00000000 00000000 00000000 abcdefgh
0001 -- 00000000 abcdefgh 00000000 abcdefgh
0010 -- abcdefgh 00000000 abcdefgh 00000000
0011 -- abcdefgh abcdefgh abcdefgh abcdefgh
rotate bottom 7 bits|0x80 right by top 5 bits
01000 -- 1bcdefgh 00000000 00000000 00000000

11111 -- 00000000 00000000 00000001 bcdefghO

Compiler

e Original RASPBERRY PI DOES NOT SUPPORT
THUMB?2

e gcc -5 hello_world.c
By default is arm32

e gcc -5 —march=armvbt -mthumb hello_world.c
Creates THUMB (won’t work on Raspberry Pi due to
HARDFP arch)

e —-mthumb -march=armv7-a Creates THUMB?2

-y 18

IT (If/Then) Instruction

e Allows limited conditional execution in THUMB-2 mode.

e The directive is optional (and ignored in ARM32)
the assembler can (in-theory) auto-generate the IT
Instruction

e Limit of 4 instructions

/Y 19

1t cc
addcc

itete
addcc
addcs
addcc
addcs

Example Code

rl,r2

CC

rl,r2
rl,r2
rl,r2
rl,r2

20

11 Example Code

ittt cs @ If CS Then Next plus CS for next 3
discrete_char:

ldrbcs 4, [r3] @ load a byte
addcs r3,#1 @ increment pointer
movcs r6,#1 @ we set r6 to one so byte

bcs.n store_byte @ and store it
offset_length:

21

AARCHO64

e 32-bit fixed instruction encoding
e 32 64-bit GP registers
o X0 - X7 = args
o x8 - x18 = temp (x8=syscall num during syscall)
o x19-x28 = callee saved
o x29 = frame pointer
o x30 = link register
o x31 = zero register or stack pointer
e PC is not a GP register

22

e only branches conditional
e no load/store multiple
e No thumb

23

Code Density

e Overview from my 11 ICCD'09 paper

e Show code density for variety of architectures, recently
added Thumb-2 support.

e Shows overall size, though not a fair comparison due to
operating system differences on non-Linux machines

-y 24

Code Density — overall

/| |W
=== RISC
= CISC
=== cmbedded
mmm 8/16-bit

5121
0_
X @ 0 L O 2.0 N0 A >N XA D NO FRX DD AVAN N 0
XX EC N LR LXFT LN LD O DD @R OO NP
CRLFE LTSS PP P oy 280 NI S VS
> Q’b 6\(}60 @Qo$ (bé(\ > _\‘_b @Q’/ N\ &Qs 'b’@&Q &S Qb

25

lzss compression

e Printing routine uses lzss compression

e Might be more representative of potential code density

-y 26

Code Density — lzss

V| |W

=== RISC

= CISC

=== cmbedded
mmm 8/16-bit

27

Put string example

@ Print Hello World

/* Print Goodbye x*/

@ put exit syscall number (1)

.equ SYSCALL_EXIT, 1
.equ SYSCALL_WRITE, 4
.equ STDOUT, 1
.globl _start
_start:
ldr rl,=hello
bl print_string
ldr rl ,=mystery
bl print_string
ldr rl ,=goodbye
bl print_string
================================
Exit
f================================
exit:
mov r0,#5
mov r7 ,#SYSCALL_EXIT
swi 0x0

@ and exit

in eax

28

Null-terminated string to print

rl is trashed by this routine

print_string:
push

mov

count_loop:
add
ldrb
cmp
bne

mov

mov
swi

pop

mov

{r0,r2,r7,r10}

r2 ,#0

r2,r2,#1
r10,[r1,r2]

r10 ,#0

count_loop
rO,#STDOUT

r7 ,#SYSCALL_WRITE
0x0

{r0,r2,r7,r10}%}

jorery akhe

© © © ©

© ©

pointed to by ril

Save rO0,r2,r7,r10 on stack
Clear Count

increment count

load byte from address ril+r2
Compare against O

if not 0, loop

Print to stdout

Load syscall number

System call

pop r0O,r2,r7,r10 from stack

Return to address stored in

29

.data
hello:
mystery:
goodbye:

.string "Hello,World!\n"
.byte 63,0x3f,63,10,0
.string "Goodbye!\n"

@ Link register

@ includes null at end
@ mystery string
@ includes null at end

30

