
ECE 471 – Embedded Systems
Lecture 12

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

27 September 2021

http://web.eece.maine.edu/~vweaver

Announcements

• HW#4 was posted

• Note: homeworks generally due at 11am (by start of

class Friday)

1

Debouncing (from last time)

• Noisy switches, have to debounce

time

time

v
o

lt
s

v
o

lt
s

Ideal Switch Press

0 0 1 1 1 1 1 100

Actual Switch Press

0 0 0 0 0 1 0 1 1 1

2

Debouncing!

• Can you fix in hardware?

◦ Capacitors?

◦ Built-in debounce (shift-registers?) like on STM32L?

• Can you fix in software? Algorithms

◦ Wait until you get X consecutive values before

changing

◦ Get new value, wait short time and check again

◦ These all have tradeoffs and can get caught by different

patterns of noise

3

Bypassing Linux for speed

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/

Trying to generate fastest GPIO square wave.
shell gpio util 40Hz
shell sysfs 2.8kHz

Python WiringPi 28kHz
Python RPi.GPIO 70kHz

C sysfs (vmw) 400kHz
C WiringPi 4.6MHz
C libbcm2835 5.4MHz
C Rpi Foundation “Native” 22MHz

4

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/

How Executables are Made

• Compiler generates ASM (Cross-compiler)

• Assembler generates machine language objects

• Linker creates Executable (out of objects)

5

Tools – Compiler

• takes code, usually (but not always) generates assembly

• Compiler can have front-end which generates

intermediate language, which is then optimized, and

back-end generates assembly

• Can be quite complex

• Examples: gcc, clang

• What language is a compiler written in? Who wrote the

first one?

6

Tools – Assembler

• Takes assembly language and generates machine

language

• creates object files

• Relatively easy to write

• Examples: GNU Assembler (gas), tasm, nasm, masm,

etc.

7

Tools – Linker

• Creates executable files from object files

• resolves addresses of symbols.

• Links to symbols in libraries.

• Examples: ld, gold

8

Converting Assembly to Machine Language

Thankfully the assembler does this for you.

ARM32 ADD instruction – 0xe0803080 == add r3,

r0, r0, lsl #1

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

9

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmRd

RnS0 0 0cond Opcode

imm5
Shift

typ
Shift Sh

Reg

0 1 0 0

Data

Processing

Immediate value (if immediate)

ADD opcode

Immediate

10

Executable Format

• ELF (Executable and Linkable Format, Extensible

Linking Format)

Default for Linux and some other similar OSes

header, then header table describing chunks and where

they go

• Other executable formats: a.out, COFF, binary blob

11

ELF Layout

ELF Header

Text (Machine Code)

Data (Initialized Data)

Program header

Symbols

Debugging Info

....

Section header

12

ELF Description

• ELF Header includes a “magic number” saying it’s

0x7f,ELF, architecture type, OS type, etc. Also location

of program header and section header and entry point.

• Program Header, used for execution:

has info telling the OS what parts to load, how, and

where (address, permission, size, alignment)

• Program Data follows, describes data actually loaded

into memory: machine code, initialized data

13

• Other data: things like symbol names, debugging info

(DWARF), etc.

DWARF backronym = “Debugging with Attributed

Record Formats”

• Section Header, used when linking:

has info on the additional segments in code that aren’t

loaded into memory, such as debugging, symbols, etc.

14

STM32L-Discovery Physical Memory
Layout

RAM

Peripheral Space

Flash

0xffff ffff

0x4000 0000

0x2000 0000 (16k)

0x0800 0000 (128k)

0x0000 0000

Start of code

....

NMI Vector

Reset Vector

Stack Pointer

15

Raspberry Pi Layout

0x1c00 0000

0xffff ffff

0x2100 0000

0x2000 0000

0x0000 0000

0x0000 0100

0x0000 8000

Our Operating

System

Invalid

Peripheral

Registers

GPU RAM

Unused RAM

System Stack

IRQ Stack

ATAGs

IRQ Vectors

(4GB)

(528MB)

(512MB)

(448MB)

(32k)

(256)

(16k)0x0000 4000

16

Linux Virtual Memory Map

Operating System
Stack

Operating System

0xffff ffff

Exexcutable Info

Environment Strings

0xbfff ffff

Cmd Line Arg Strings

Executable Name

Padding

Stack

Cmd Line Arg Count

Command Line Pointers

Environment Pointers

ELF Auxiliary Vectors

Text (Executable)

0x0804 8000

Data

BSS

Heap

mmap

vdso

Null Guard Page
0x0000 0000

shared libraries

17

Program Memory Layout on Linux

• Text: the program’s raw machine code

• Data: Initialized data

• BSS: uninitialized data; on Linux this is all set to 0.

• Heap: dynamic memory. malloc() (brk() syscall) and

C++ new(). Grows up.

• Stack: LIFO memory structure. Grows down.

18

Program Layout

• Kernel: is mapped into top of address space, for

performance reasons

• Command Line arguments, Environment, AUX vectors,

etc., available above stack

• For security reasons “ASLR” (Address Space Layout

Randomization) is often enabled. From run to run the

exact addresses of all the sections is randomized, to

make it harder for hackers to compromise your system.

19

Brief overview of Virtual Memory

• Each program gets a flat 4GB (on 32-bit) memory space.

The CPU and Operating system work together to provide

this, even if not that much RAM is available and even

though different processes seem to be using the same

addresses.

• Physical vs Virtual Memory

• OS/CPU deal with “pages”, usually 4kB chunks of

memory.

• Every mem access has to be translated. The operating

20

system looks in the “page table” to see which physical

address your virtual address maps to.

This is slow. That’s where TLB comes in; it caches

pagetable translations. As long as you don’t run out of

TLB entries this goes fast.

• Demand paging: the OS doesn’t have to load pages

into memory until the first time you actually load/store

them.

• Context Switch: when you switch to a new program,

the TLB is flushed and a different page table is used to

provide the new program its own view of memory.

21

