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Announcements

• Don’t forget HW#5
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Homework #4 Error Checking

• What do you do if there’s an error?

• Ignore it? Why could that be bad?

• Retry until it succeeds?

• Print an error message and continue?

Can you continue?

What if continuing with a bad file descriptor breaks

things?

What if printing too many error messages fills up a log,

swamps the screen, hides other errors?
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• Good error message

Can’t be confused with valid input (airlock)

If displayed to user, make it easy to understand

• Print an error message and exit?

What if it’s a critical system?

• Crashing is almost never the right answer.
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Homework #4 Permissions

• We haven’t really discussed Linux permissions

• List file, “user” ”group” ”all”

• drwxr-xr-x

• Often in octal, 777 means everyone access

• Devices under /dev or /sysfs might be set to only root

or superuser

• Traditional UNIX /dev you can set with chown (to set

user/group) or chmod (to set permissions)

• Group under /etc/group, so gpio group
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• Having to manually set permissions a pain. Program

called udev that does it automatically when a device

driver is configured. It might take a few ms to notice

• Why is it better than using “sudo”? Why might I as

grader not want to run your code using “sudo” if I can

avoid it?

• How to set up sudo? /etc/sudoers file
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Homework #4 – LED Blinking

• Blink frequency. Remember, 1Hz is 500ms on / 500ms

off

not 500us, not 1s

• Blink correct GPIO. Does it matter? Want to fire

engines, not engage self destruct.
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Homework #4 – Switch

• Debouncing

◦ 100ms or even 10ms is long time

◦ Tricky as we are detecting levels not edges here

◦ Reading and only reporting if you say have 3 in a row

of save val

◦ Reading, sleeping a bit, then report the value after has

settled

◦ Just sleeping a long time after any change? If a short

glitch happens this might misreport.
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◦ Sleep too long, might miss events

◦ Debounce if using interrupt-driven code

In that case debouncing might be to ignore repeated

changes if they happen too close together
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Homework #4 Question

• 5.a Why usleep? Less resources (not busy

sleeping), cross-platform (not speed-of-machine-

dependent), compiler won’t remove, other things can

run, power saving.

Be careful saying accuracy! usleep() guarantees a

minimum time delay, but it is best effort how long

the delay actually is. So if you really need *exact* time

delays you probably want some other interface.

• 5.b Layer of abstraction. In this case, not having
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to bitbang the interface or know low-level addresses,

portability among machines.

ability to run WiringPi is not a benefit

• 6.a Machines from dmesg: 2021: Pi4 (12) Pi3B+ (5)

(alphabetical) dmesg a good place to find error messages,

etc. grep
• 6.b Kernel versions. Current Linus kernel (upstream) is
5.14 /5.15-rc4
Uname syscall, what the parts mean

Linux linpack-test 4.14.50-v7+ #1122 SMP Tue Jun 19 12:26:26 BST 2018 armv7l GNU/Linux\\

Linux orvavista 4.5.0-2-amd64 #1 SMP Debian 4.5.5-1 (2016-05-29) x86_64 GNU/Linux\\

2021: 5.10.11 (5) 5.10.17 (5) 5.10.60 (4) 5.4.51 (1)
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4.19.97 (1) 4.9.80 (1)

• 6.c. Disk space. Why -h? Human readable. what does

that mean? Why is it not the default? At least Linux

defaults to 1kB blocks (UNIX was 512) Lots of large

disks.
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Trusted Firmware

• Firmware can be dangerous: runs below/outside of the

Operating System, doesn’t matter how secure your OS

is if firmware compromised

• Can you trust your firmware to be not-evil?

• Evil Maid problem – what if someone breaks into your

hotel room and replaces your firmware – could you tell?

• Best you can do is trust it to be the same firmware

released by your vendor (you still have to trust them)

• Use cryptographic signing. Hardware will only run code
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“signed” by a trusted entity.

• A signed firmware can run a signed bootloader which

can run a signed operating system which can run signed

apps

• Downside: no longer general purpose, average person

cannot run code they wrote unless they can get it signed

• Code still has to be well written. “jailbreaks” on phones

and video game consoles are due to trusted code having

bugs and then jumping into unsigned code.

• Will you still be able to run Linux?

Trust Microsoft to keep signing bootloader for us?
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• Also the Apple / EPIC thing
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Trusted Firmware

• What is the Pi GPU doing?

• What about the T2 processor on macs?

• New for ARMv8: ARM Trusted Firmware (ATF). Two

standards, vendors have possibly made a mess of it

already.

• Other platforms have it too. DRM to keep you from

copying movies or video games.

• Windows 11 requiring TPM2 module
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Boot Methods

Firmware can be quite complex.

• Floppy

• Hard-drive (PATA/SATA/SCSI/RAID)

• CD/DVD

• USB

• Network (PXE/tftp)
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• Flash, SD card

• Tape

• Networked tape

• Paper tape? Front-panel switches?
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Disk Partitions

• Way to virtually split up disk.

• DOS GPT – old partition type, in MBR. Start/stop

sectors, type

• Types: Linux, swap, DOS, etc

• GPT had 4 primary and then more secondary

• Lots of different schemes (each OS has own, Linux

supports many). UEFI more flexible, greater than 2TB

• Why partition disks?

◦ Different filesystems; bootloader can only read FAT?
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◦ Dual/Triple boot (multiple operating systems)

◦ Old: filesystems can’t handle disk size
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Device Detection

• x86, well-known standardized platform. What windows

needs to boot. Can auto-discover things like PCI bus,

USB. Linux kernel on x86 can boot on most.

• Old ARM, hard-coded. So a rasp-pi kernel only could

boot on Rasp-pi. Lots of pound-defined and hard-coded

hw info.

• New way, device tree. A blob that describes the

hardware. Pass it in with boot loader, and kernel can use
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it to determine what hardware is available. So instead

of Debian needing to provide 100 kernels, instead just

1 kernel and 100 device tree files that one is chosen at

install time.

• Does mean that updating to a new kernel can be a pain.
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Detecting Devices

There are many ways to detect devices

• Guessing/Probing – can be bad if you guess wrong and

the hardware reacts poorly to having unexpected data

sent to it

• Standards – always knowing that, say, VGA is at address

0xa0000. PCs get by with defacto standards

• Enumerable hardware – busses like USB and PCI allow

you to query hardware to find out what it is and where
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it is located

• Hard-coding – have a separate kernel for each possible

board, with the locations of devices hard-coded in. Not

very maintainable in the long run.

• Device Trees – see next slide
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Devicetree

• Traditional Linux ARM support a bit of a copy-paste and

#ifdef mess

• Each new platform was a compile option. No common

code; kernel for pandaboard not run on beagleboard not

run on gumstix, etc.

• Work underway to be more like x86 (where until recently

due to PC standards a kernel would boot on any x86)

• A “devicetree” passes in enough config info to the kernel
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to describe all the hardware available. Thus kernel much

more generic

• Still working on issues with this.
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