ECE 471 — Embedded Systems
Lecture 16

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

6 October 2021

http://web.eece.maine.edu/~vweaver

Announcements

e Don't forget HW#5

Homework #4 Error Checking

e What do you do if there's an error?

e Ignore it? Why could that be bad?

e Retry until it succeeds?

e Print an error message and continue?
Can you continue?
What if continuing with a bad file descriptor breaks
things?
What if printing too many error messages fills up a log,
swamps the screen, hides other errors?

-y)

e Good error message

Can’t be confused with valid input (airlock)

If displayed to user, make it easy to understand
e Print an error message and exit?

What if it's a critical system?
e Crashing is almost never the right answer.

Homework #4 Permissions

e We haven't really discussed Linux permissions

o List file, "user” "group” "all”

® drwXr—-xr-Xx

e Often in octal, 777 means everyone access

e Devices under /dev or /sysfs might be set to only root
or superuser

e Traditional UNIX /dev you can set with chown (to set
user/group) or chmod (to set permissions)

e Group under /etc/group, so gpio group

-y 4

e Having to manually set permissions a pain. Program
called udev that does it automatically when a device
driver is configured. It might take a few ms to notice

e Why is it better than using “sudo”? Why might | as
grader not want to run your code using “sudo” if | can
avoid it?

e How to set up sudo? /etc/sudoers file

Homework #4 — LED Blinking

e Blink frequency. Remember, 1Hz is 500ms on / 500ms
off
not 500us, not 1s

e Blink correct GPIO. Does it matter? Want to fire
engines, not engage self destruct.

Homework #4 — Switch

e Debouncing

o 100ms or even 10ms is long time

o Tricky as we are detecting levels not edges here

o Reading and only reporting if you say have 3 in a row
of save val

o Reading, sleeping a bit, then report the value after has
settlec

o Just sleeping a long time after any change? If a short
glitch happens this might misreport.

-y 7

o Sleep too long, might miss events

o Debounce if using interrupt-d
In that case debouncing mig

riven code
nt be to ignore repeated

changes if they happen too ¢

ose together

Homework #4 Question

e 5a Why usleep? Less resources (not busy
sleeping), cross-platform (not speed-of-machine-
dependent), compiler won't remove, other things can
run, power saving.
Be careful saying accuracy! usleep() guarantees a
minimum time delay, but it is best effort how long
the delay actually is. So if you really need *exact™® time
delays you probably want some other interface.

e 5.b Layer of abstraction. In this case, not having

-y 9

to bitbang the interface or know low-level addresses,
portability among machines.
ability to run WiringP1 is not a benefit

e 6.a Machines from dmesg: 2021: Pi4 (12) Pi3B+ (5)
(alphabetical) dmesg a good place to find error messages,

etc. grep
e 6.b Kernel versions. Current Linus kernel (upstream) is

5.14 /5.15-rc4
Uname syscall, what the parts mean

Linux linpack-test 4.14.50-v7+ #1122 SMP Tue Jun 19 12:26:26 BST 2018 armv71l GNU/Linux\\
Linux orvavista 4.5.0-2-amd64 #1 SMP Debian 4.5.5-1 (2016-05-29) x86_64 GNU/Linux\\

2021: 5.10.11 (5) 5.10.17 (5) 5.10.60 (4) 5.4.51 (1)

-y 10

4.19.97 (1) 4.9.80 (1)

e 0.c. Disk space. Why -h? Human readable. what does
that mean? Why is it not the default? At least Linux
defaults to 1kB blocks (UNIX was 512) Lots of large
disks.

/Y 11

Trusted Firmware

e Firmware can be dangerous: runs below/outside of the
Operating System, doesn’t matter how secure your OS
is if firmware compromised

e Can you trust your firmware to be not-evil?

e Evil Maid problem — what if someone breaks into your
hotel room and replaces your firmware — could you tell?

e Best you can do is trust it to be the same firmware
released by your vendor (you still have to trust them)

e Use cryptographic signing. Hardware will only run code

-y 1

“signed” by a trusted entity.

e A signed firmware can run a signed bootloader which
can run a signed operating system which can run signed
apps

e Downside: no longer general purpose, average person
cannot run code they wrote unless they can get it signed

e Code still has to be well written. “jailbreaks” on phones
and video game consoles are due to trusted code having
bugs and then jumping into unsigned code.

e Will you still be able to run Linux?

Trust Microsoft to keep signing bootloader for us?

13

e Also the Apple / EPIC thing

14

Trusted Firmware

e What is the Pi GPU doing?

e \What about the T2 processor on macs?

e New for ARMv8: ARM Trusted Firmware (ATF). Two
standards, vendors have possibly made a mess of it
already.

e Other platforms have it too. DRM to keep you from
copying movies or video games.

e Windows 11 requiring TPM2 module

-y 15

Boot Methods

Firmware can be quite complex.

e Floppy
e Hard-drive (PATA/SATA/SCSI/RAID)

e CD/DVD
e USB

e Network (PXE/tftp)

16

e Flash, SD card
e [ape
e Networked tape

e Paper tape? Front-panel switches?

17

Disk Partitions

e Way to virtually split up disk.

e DOS GPT - old partition type, in MBR. Start/stop
sectors, type

e Types: Linux, swap, DOS, etc

e GPT had 4 primary and then more secondary

e Lots of different schemes (each OS has own, Linux
supports many). UEFI more flexible, greater than 2TB

e \Why partition disks?
o Different filesystems; bootloader can only read FAT?

/Y 18

o Dual/Triple boot (multiple operating systems)
o Old: filesystems can’'t handle disk size

19

Device Detection

e x80, well-known standardized platform. What windows
needs to boot. Can auto-discover things like PCI bus,
USB. Linux kernel on x86 can boot on most.

e Old ARM, hard-coded. So a rasp-pi kernel only could
boot on Rasp-pi. Lots of pound-defined and hard-coded
hw info.

e New way, device tree. A blob that describes the
hardware. Pass it in with boot loader, and kernel can use

-y 20

it to determine what hardware is available. So instead
of Debian needing to provide 100 kernels, instead just
1 kernel and 100 device tree files that one is chosen at
install time.

e Does mean that updating to a new kernel can be a pain.

/Y 21

Detecting Devices

There are many ways to detect devices

e Guessing/Probing — can be bad if you guess wrong and

the hardware reacts poorly to having unexpected data
sent to It

e Standards — always knowing that, say, VGA is at address
0xa0000. PCs get by with defacto standards

e Enumerable hardware — busses like USB and PCI allow
you to query hardware to find out what it is and where

22

It 1s located

e Hard-coding — have a separate kernel for each possible
board, with the locations of devices hard-coded in. Not
very maintainable in the long run.

e Device Trees — see next slide

-y 23

Devicetree

e Traditional Linux ARM support a bit of a copy-paste and
+#ifdef mess

e Each new platform was a compile option. No common
code; kernel for pandaboard not run on beagleboard not
run on gumstix, etc.

e Work underway to be more like x86 (where until recently
due to PC standards a kernel would boot on any x86)

e A “devicetree” passes in enough config info to the kernel

24

to describe all the hardware available. Thus kernel much
more generic

e Still working on issues with this.

-y 25

