
ECE 471 – Embedded Systems
Lecture 16

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

6 October 2021

http://web.eece.maine.edu/~vweaver


Announcements

• Don’t forget HW#5

1



Homework #4 Error Checking

• What do you do if there’s an error?

• Ignore it? Why could that be bad?

• Retry until it succeeds?

• Print an error message and continue?

Can you continue?

What if continuing with a bad file descriptor breaks

things?

What if printing too many error messages fills up a log,

swamps the screen, hides other errors?

2



• Good error message

Can’t be confused with valid input (airlock)

If displayed to user, make it easy to understand

• Print an error message and exit?

What if it’s a critical system?

• Crashing is almost never the right answer.

3



Homework #4 Permissions

• We haven’t really discussed Linux permissions

• List file, “user” ”group” ”all”

• drwxr-xr-x

• Often in octal, 777 means everyone access

• Devices under /dev or /sysfs might be set to only root

or superuser

• Traditional UNIX /dev you can set with chown (to set

user/group) or chmod (to set permissions)

• Group under /etc/group, so gpio group

4



• Having to manually set permissions a pain. Program

called udev that does it automatically when a device

driver is configured. It might take a few ms to notice

• Why is it better than using “sudo”? Why might I as

grader not want to run your code using “sudo” if I can

avoid it?

• How to set up sudo? /etc/sudoers file

5



Homework #4 – LED Blinking

• Blink frequency. Remember, 1Hz is 500ms on / 500ms

off

not 500us, not 1s

• Blink correct GPIO. Does it matter? Want to fire

engines, not engage self destruct.

6



Homework #4 – Switch

• Debouncing

◦ 100ms or even 10ms is long time

◦ Tricky as we are detecting levels not edges here

◦ Reading and only reporting if you say have 3 in a row

of save val

◦ Reading, sleeping a bit, then report the value after has

settled

◦ Just sleeping a long time after any change? If a short

glitch happens this might misreport.

7



◦ Sleep too long, might miss events

◦ Debounce if using interrupt-driven code

In that case debouncing might be to ignore repeated

changes if they happen too close together

8



Homework #4 Question

• 5.a Why usleep? Less resources (not busy

sleeping), cross-platform (not speed-of-machine-

dependent), compiler won’t remove, other things can

run, power saving.

Be careful saying accuracy! usleep() guarantees a

minimum time delay, but it is best effort how long

the delay actually is. So if you really need *exact* time

delays you probably want some other interface.

• 5.b Layer of abstraction. In this case, not having

9



to bitbang the interface or know low-level addresses,

portability among machines.

ability to run WiringPi is not a benefit

• 6.a Machines from dmesg: 2021: Pi4 (12) Pi3B+ (5)

(alphabetical) dmesg a good place to find error messages,

etc. grep
• 6.b Kernel versions. Current Linus kernel (upstream) is
5.14 /5.15-rc4
Uname syscall, what the parts mean

Linux linpack-test 4.14.50-v7+ #1122 SMP Tue Jun 19 12:26:26 BST 2018 armv7l GNU/Linux\\

Linux orvavista 4.5.0-2-amd64 #1 SMP Debian 4.5.5-1 (2016-05-29) x86_64 GNU/Linux\\

2021: 5.10.11 (5) 5.10.17 (5) 5.10.60 (4) 5.4.51 (1)

10



4.19.97 (1) 4.9.80 (1)

• 6.c. Disk space. Why -h? Human readable. what does

that mean? Why is it not the default? At least Linux

defaults to 1kB blocks (UNIX was 512) Lots of large

disks.

11



Trusted Firmware

• Firmware can be dangerous: runs below/outside of the

Operating System, doesn’t matter how secure your OS

is if firmware compromised

• Can you trust your firmware to be not-evil?

• Evil Maid problem – what if someone breaks into your

hotel room and replaces your firmware – could you tell?

• Best you can do is trust it to be the same firmware

released by your vendor (you still have to trust them)

• Use cryptographic signing. Hardware will only run code

12



“signed” by a trusted entity.

• A signed firmware can run a signed bootloader which

can run a signed operating system which can run signed

apps

• Downside: no longer general purpose, average person

cannot run code they wrote unless they can get it signed

• Code still has to be well written. “jailbreaks” on phones

and video game consoles are due to trusted code having

bugs and then jumping into unsigned code.

• Will you still be able to run Linux?

Trust Microsoft to keep signing bootloader for us?

13



• Also the Apple / EPIC thing

14



Trusted Firmware

• What is the Pi GPU doing?

• What about the T2 processor on macs?

• New for ARMv8: ARM Trusted Firmware (ATF). Two

standards, vendors have possibly made a mess of it

already.

• Other platforms have it too. DRM to keep you from

copying movies or video games.

• Windows 11 requiring TPM2 module

15



Boot Methods

Firmware can be quite complex.

• Floppy

• Hard-drive (PATA/SATA/SCSI/RAID)

• CD/DVD

• USB

• Network (PXE/tftp)

16



• Flash, SD card

• Tape

• Networked tape

• Paper tape? Front-panel switches?

17



Disk Partitions

• Way to virtually split up disk.

• DOS GPT – old partition type, in MBR. Start/stop

sectors, type

• Types: Linux, swap, DOS, etc

• GPT had 4 primary and then more secondary

• Lots of different schemes (each OS has own, Linux

supports many). UEFI more flexible, greater than 2TB

• Why partition disks?

◦ Different filesystems; bootloader can only read FAT?

18



◦ Dual/Triple boot (multiple operating systems)

◦ Old: filesystems can’t handle disk size

19



Device Detection

• x86, well-known standardized platform. What windows

needs to boot. Can auto-discover things like PCI bus,

USB. Linux kernel on x86 can boot on most.

• Old ARM, hard-coded. So a rasp-pi kernel only could

boot on Rasp-pi. Lots of pound-defined and hard-coded

hw info.

• New way, device tree. A blob that describes the

hardware. Pass it in with boot loader, and kernel can use

20



it to determine what hardware is available. So instead

of Debian needing to provide 100 kernels, instead just

1 kernel and 100 device tree files that one is chosen at

install time.

• Does mean that updating to a new kernel can be a pain.

21



Detecting Devices

There are many ways to detect devices

• Guessing/Probing – can be bad if you guess wrong and

the hardware reacts poorly to having unexpected data

sent to it

• Standards – always knowing that, say, VGA is at address

0xa0000. PCs get by with defacto standards

• Enumerable hardware – busses like USB and PCI allow

you to query hardware to find out what it is and where

22



it is located

• Hard-coding – have a separate kernel for each possible

board, with the locations of devices hard-coded in. Not

very maintainable in the long run.

• Device Trees – see next slide

23



Devicetree

• Traditional Linux ARM support a bit of a copy-paste and

#ifdef mess

• Each new platform was a compile option. No common

code; kernel for pandaboard not run on beagleboard not

run on gumstix, etc.

• Work underway to be more like x86 (where until recently

due to PC standards a kernel would boot on any x86)

• A “devicetree” passes in enough config info to the kernel

24



to describe all the hardware available. Thus kernel much

more generic

• Still working on issues with this.

25


