
ECE 471 – Embedded Systems
Lecture 17

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

8 October 2021

http://web.eece.maine.edu/~vweaver


Announcements

• Project info coming soon.

• ECE Seminar today at 2pm in Hill Auditorium, attend it

if you can

• HW#5 was due

• HW#6 might be delayed, in any case will be due in

*two* weeks

• Midterm is a week from Friday, the 15th

1



• Review on Wed

• No class Monday (Fall Break)

2



Device Detection

• x86, well-known standardized platform. What windows

needs to boot. Can auto-discover things like PCI bus,

USB. Linux kernel on x86 can boot on most.

• Old ARM, hard-coded. So a rasp-pi kernel only could

boot on Rasp-pi. Lots of pound-defined and hard-coded

hw info.

• New way, device tree. A blob that describes the

hardware. Pass it in with boot loader, and kernel can use

3



it to determine what hardware is available. So instead

of Debian needing to provide 100 kernels, instead just

1 kernel and 100 device tree files that one is chosen at

install time.

• Does mean that updating to a new kernel can be a pain.

4



Detecting Devices

There are many ways to detect devices

• Guessing/Probing – can be bad if you guess wrong and

the hardware reacts poorly to having unexpected data

sent to it

• Standards – always knowing that, say, VGA is at address

0xa0000. PCs get by with defacto standards

• Enumerable hardware – busses like USB and PCI allow

you to query hardware to find out what it is and where

5



it is located

• Hard-coding – have a separate kernel for each possible

board, with the locations of devices hard-coded in. Not

very maintainable in the long run.

• Device Trees – see next slide

6



Devicetree

• Traditional Linux ARM support a bit of a copy-paste and

#ifdef mess

• Each new platform was a compile option. No common

code; kernel for pandaboard not run on beagleboard not

run on gumstix, etc.

• Work underway to be more like x86 (where until recently

due to PC standards a kernel would boot on any x86)

• A “devicetree” passes in enough config info to the kernel

7



to describe all the hardware available. Thus kernel much

more generic

• Still working on issues with this.

8



Booting Linux

• Bootloader jumps into OS entry point

• Set Up Virtual Memory

• Setup Interrupts

• Detect Hardware / Install Device Drivers

• Mount filesystems

• Pass control to userspace / call init (systemd?)

9



• Run init scripts

• rc boot scripts, /etc/rc.local

Start servers, or “daemons” as they’re called under

Linux.

• fork()/exec(), run login, run shell

10



How a Program is Loaded on Linux

• Kernel Boots

• init started

• init calls fork()

• child calls exec()

• Kernel checks if valid ELF. Passes to loader

• Loader loads it. Clears out BSS. Sets up stack. Jumps

11



to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.

12



Viewing Processes

• You can use top to see what processes are currently

running

• Though htop can be cooler

• Also ps but that’s a bit harder to use.

13



Homework 6 – Background

• You have two weeks to do this one

• Handout should cover most of it

• bit-banging i2c

• Why not bitbang everything? A pain. Hardware does it

for you. Hardware even does more, can often buffer or

DMA, timing more exact.

• Why might you want to bitbang i2c? Only have one i2c

bus? Or no i2c bus, only GPIOs? kernel has bitbang

driver

14



• Tell my boring frontpath i2c-bitbang story

15



Homework 6 – Implementation

• Use the gpio interface to drive the SDA and SCL lines

to manually run the 4x7 LED display

• Still easier than full bitbang, where you’d have to write

to various i/o addresses

• A lot of the code is provided for you, follow the directions

• How do you set SDA low?

Set output to ’0’

• How do you set SDA high?

Open collector, need to let it float, not be driven 1

16



The Linux interface lets you select a line to be open-drain

and when you do that, when you output a 1 it knows to

switch the pin to “input” which lets the line float

17



Homework 6 – Multiple Files

• This homework has the compiler compiling multiple small

files and then linking them together.

• Why do this? Easier to edit smaller files, easier if

collaborating with others, lets you share code without

cut and pasting

• gcc -c file.c creates file.o

• Link a number of files together

gcc -o executable file1.o file2.o file3.o

• This is how you create libraries (static just a matter of

18



ar, dynamic are a bit more complicated)

• All global functions/vars are exported, unless you declare

them static

• How do you know how to call functions in other files?

Need to pre-declare prototype so the compiler knows

how to set up the registers before calling. Traditionally

with C this is done in a .h header file

• Include files with #include "file.h". You may also

have seen angle brackets, what is the difference?

• By default all functions/global vars are exported. How

can you specify to only be visible in own file? Use the

19



static keyword.

20


