
ECE 471 – Embedded Systems
Lecture 22

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

27 October 2021

http://web.eece.maine.edu/~vweaver


Announcements

• Don’t forget SPI homework HW#7

• Don’t forget project topics (due next Friday, the 5th)

1



Scheduler example

• Simple: In order the jobs arrive

• Static: (RMS) Rate Monotonic Scheduling – shortest

first

• Dynamic: (EDF) Earliest deadline first

• Three tasks come in

◦ A: finish in 10s, 4s long

◦ B: finish in 3s, 2s long

◦ C: finish in 5s, 1s long

• Can they meet the deadline?

2



• There is a large body of work on scheduling algorithms.

In-order A A A A B B C - - -

RMS C B B A A A A - - -

EDF B B C A A A A - - -

3



Locking

• When shared hardware/software and more than one thing

might access at once

• Multicore: thread 1 read temperature, write to

temperature variable

thread 2 read temperature variable to write to display

let’s say it’s writing 3 digit ASCII. Goes from 79 to 80.

Will you always get 79 or 80? Can you get 70 or 89?

• How do you protect this? With a lock. Special data

structure, allows only one access to piece of memory,

4



others have to wait.

• Can this happen on single core? Yes, what about

interrupts.

• Implemented with special instructions, in assembly

language

• Usually you will use a library, like pthreads

• mutex/spinlock

• Atomicity

5



Priority Inversion Example

• Task priority 3 takes lock on some piece of hardware

(camera for picture)

• Task 2 fires up and pre-empts task 3

• Task 1 fires up and pre-empts task 1, but it needs same

HW as task 3. Waits for it. It will never get free.

(camera for navigation?)

• Space probes have had issues due to this.

6



Real Time without an O/S

Often an event loop. All parts have to be written so

deadlines can be met.
main() {

while (1) {

do_task1 (); // read sensor

do_task2 (); // react to sensor

do_task3 (); // update GUI (low priority)

}

}

7



Bare Metal

• What if want priorities?

• Have GUI always run, have the other things happen in

timer interrupt handler?

• What if you have multiple hardware all trying to use

interrupts (network, serial port, etc)

• At some point it’s easier to let an OS handle the hard

stuff

8



Real Time Operating System

• Can provide multi-tasking/context-switching

• Can provide priority-based scheduling

• Can provide low-overhead interrupts

• Can provide locking primitives

9



Hard Real Time Operating System

• Can it be hard real time?

• Is it just some switch you can throw? (No)

• Simple ones can be mathematically provable

• Otherwise, it’s a best effort

10



Priority Based, like Vxworks

• Each task has priority 0 (high) to 255 (low)

• When task launched, highest priority gets to run

• Other tasks only get to run when higher is finished or

yields

• What if multiple of same priority? Then go round-robin

or similar

11



Free RTOS

• Footprint as low as 9K

• Pre-emptive or co-op multitasking

• Task priority

• Semaphores/Mutexes

• Timers

• Stack overflow protection

• Inter-process communication (queues, etc)

• Power management support

• Interrupts (interrupt priority)

12



Memory Allocation – Static vs Dynamic

• Using malloc() and new()

• Not always available

• Code can be large

• Is it thread safe?

• Is it deterministic?

• Can lead to fragmentation

• What to do if fails?

• Free RTOS (newer) allows static allocation at compile

time

13



Is Regular Linux a RTOS

• Not really

• Can do priorities (“nice”) but the default ones are not

RT.

14



PREEMPT Kernel

• Linux PREEMPT RT

• Faster response times

• Remove all unbounded latencies

• Change locks and interrupt threads to be pre-emptible

• Have been gradually merging changes upstream

15



Typical kernel, when can you pre-empt

• When user code running

• When a system call or interrupt happens

• When kernel code blocks on mutex (lock) or voluntarily

yields

• If a high priority task wants to run, and the kernel is

running, it might be hundreds of milliseconds before you

get to run

16



• Pre-empt patch makes it so almost any part of kernel can

be stopped (pre-empted). Also moves interrupt routines

into pre-emptible kernel threads.

17



Linux PREEMPT Kernel

• What latencies can you get?

10-30us on some x86 machines

• Depends on firmware; SMI interrupts (secret system

mode, can’t be blocked, emulate USB, etc.)

Slow hardware; CPU frequency scaling; nohz

• Special patches, recompile kernel

• Priorities

◦ Linux Nice: -20 to 19 (lowest), use nice command

◦ Real Time: 0 to 99 (highest)

18



◦ Appears in ps as 0 to 139?

19



Changes to your code

• What do you do about unknown memory latency?

◦ mlockall() memory in, start threads and touch at

beginning, avoid all causes of pagefaults.

• What do you do about priority?

◦ Use POSIX interfaces, no real changes needed in code,

just set higher priority

◦ See the chrt tool to set priorities.

• What do you do about interrupts?

◦ See next

20



Interrupts

• Why are interrupts slow?

• Shared lines, have to run all handlers

• When can they not be pre-empted? IRQ disabled? If

a driver really wanted to pause 1ms for hardware to be

ready, would often turn off IRQ and spin rather than

sleep

• Higher priority IRQs? FIR on ARM?

• Top Halves / Bottom Halves

• Unrelated, but hi-res timers

21



Co-operative real-time Linux

• Xenomai

• Linux run as side process, sort of like hypervisor

22



Non-Linux RTOSes

• Interesting reference: https://rtos.com/rtos/

• Often are much simpler than Linux

• Some only need a few kilobytes of overhead

• Really, just replacements for an open-coded main loop

that did a few tasks sequentially. (Effectively round-

robin). Can possibly get better response if you multitask.

• Provide fast context-switching, interrupt handling,

23

https://rtos.com/rtos/


process priority (scheduling), and various locking/mutex

libraries

24



List of some RTOSes

• Vxworks (the Martian)

• Neutrino

• Free RTOS

• Windows CE

• MongooseOS (recent LWN article?)

• ThreadX (in the Pi GPU)

25


