
ECE 471 – Embedded Systems
Lecture 27

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

8 November 2021

http://web.eece.maine.edu/~vweaver

Announcements

• HW#9 was assigned, due a week from Friday

• Responded to all project topics I received, please send if

you haven’t

1

Social Engineering

• Often easier than actual hacking

• Talking your way into a system

• Looking like you know what you are doing

• “The Art of Deception”

2

Case Studies of Buggy Code

• Not all issues are security related

• Similar causes

◦ Poorly designed UI

◦ Lack of error checking/handling

◦ Insufficient Testing

◦ Bad specifications

3

Examples – CANbus

• 2010 IEEE Symposium on Security and Privacy.

Experimental Security Analysis of a Modern Automobile

U of Washington and UCSD.

• Fuzzing/ARM/CANbus

• can control brakes (on / off suddenly)

• heating, cooling, lights, instrument panel

• windows/locks Why? fewer wires if on a bus then

direct-wired

• electronic stability control, antilock, need info from each

4

wheel

• roll stability control (affect braking, turning to avoid

rollover)

• cruise control

• pre-crash detection (tighten seatbelts, charge brakes)

• while it might be nice to have separate busses for

important and unimportant, in practice they are bridged

• Locks– monitor buttons, also remote keyfob... but also

disengage if airbag deploys

• OnStar – remotely monitor car, even remotely stop it (in

case of theft) over wireless modem

5

• Access? OBD-II port, also wireless

• 2009 car

• cars after 2008 required to have canbus?

• Problems with CAN

◦ Broadcast... any device can send packets to any other

◦ Priority.. devices set own priority, can monopolize bus

◦ No authentication... any device can control any other

◦ Challenge-response. Cars are supposed to block

attempts to re-flash or enter debug mode without

auth. But, mostly 16-bits, and required to allow a try

every 10s, so can brute force in a week.

6

◦ If you can re-flash firmware you can control even w/o

ongoing access

• Not supposed to disable CAN or reflash firmware while

car moving, but on the cars tested they could.

• Probing – packet sniffing, fuzzing (easier as packet sizes

small)

• experiments – on jackstands or closed course

• controlled radio – display, sounds, chimes

• Instrument panel – set arbitrary speed, rpm, fuel,

odometer, etc

• Body control – could lock/unlock (jam by holding down

7

lock), pop trunk, blow horn, wipers on, lights off

• Engine... mess with timing. forge ”airbag deployed” to

stop engine

• Brakes.. managed to lock brakes so bad even reboot

and battery removal not fix, had to fuzz to find antidote

• can over-ride started switch. wired-or

• test on airport. cord to yank laptop out of ODB-II

• fancy attacks. Have speedometer read too high. Disable

lights. ”self-destruct” w countdown on dash, horn

beeping as got closer, then engine disable.

8

Stuxnet

• SCADA – supervisory control and data acquisition

• industrial control system

• STUXNET.. targets windows machines, but only

activates if Siemens SCADA software installed. four

zero-day vulnerabilities

USB flash drives

signed with stolen certificates

9

• Interesting as this was a professional job. Possibly

by US/Israel targeting very specific range of centrifuges

reportedly used by Iran nuclear program. While reporting

”everything OK” the software then spun fast then slow

enough to ruin equipment.

10

Examples – JTag/hard-disk

• JTAG/Hard-disk takeover

• http://spritesmods.com/?art=hddhack&page=8

• Find JTAG

• 3 cores on hard-disk board, all ARM. One unused.

• Install custom Linux on third core. Then have it do

things like intercept reads and change data that is read.

11

http://spritesmods.com/?art=hddhack&page=8

Places for More Info

• Embedded projects: http://hackaday.com

They had a recent series on CAN-bus

• Computer Risks and Security Issues: The RISKS digest

from comp.risks

http://www.risks.org

12

http://hackaday.com
http://www.risks.org

Automotive

• Bugs, Toyota firmware

• http://www.edn.com/design/automotive/4423428/2/Toyota-s-killer-firmware--Bad-design-and-its-consequences

13

http://www.edn.com/design/automotive/4423428/2/Toyota-s-killer-firmware--Bad-design-and-its-consequences

Airplanes

• AA Flight 965. Autopilot to waypoint R. Re-entered

it, two starting with R, so it helpfully picked one with

highest frequency, did a semi-circle turn to east right

into a mountain.

• Air France Flight 447, reliance on autopilot

• Boeing 737MAX issues with MCAS system

14

Military

• Patriot missile – clock drift slightly, but when on for

hundreds of hours enough to affect missile tracking

• Yorktown smart ship – 1997 – Running Windows NT.

Someone entered 0 in a field, divide by 0 error, crashed

the ship. Database crash, crashed propulsion system.

Rumors that it needed to be towed in, but no, only down

for 2.75 hours.

• F-22s computers crashed when crossing 180 degrees

longitude? Lost navigation and communication, had to

15

follow tankers back to Hawaii.

16

Spacecraft

• Mariner 1 (1962) – rocket off course due to

mis-transcribed specification into FORTRAN, missing

overbar

• Apollo 11 (1969) – landing on moon.

◦ 36k ROM (rope), 2k RAM, 70lbs, 55W, 5600 3-input

NOR

◦ Processor normally loaded with 85% load. DELTAH

program run which take 10%. But buggy radar device

was stealing 13% even though in standby mode.

17

◦ Multiple 1202 overload alarms

◦ Mini real-time OS with priority killed low-priority tasks

so things still worked.

• Ariane 5 Flight 501 (1996) – famous. $370 million.

◦ Old code copied from Ariane 4. Horizontal acceleration

◦ Could not trigger on Ariane 4 (accel never that large)

◦ Could trigger on more powerful Ariane 5

◦ Conversion from 64-bit float to 16-bit signed int

overflowed. Trap

◦ Primary guidance computer crashed

◦ Secondary computer, but ran same code, crashed

18

◦ Sent debug messages after crash, autopilot read those

as velocity data

◦ Destructed 37s after launch

◦ Written in ADA

• NASA Mars Polar Lander (1999)

◦ likely mistook turbulence vibrations for landing and

shut off engine 40m above surface

• NASA Mars Climate Orbiter

◦ ground software using lbf (pound/foot) units, craft

expecting Newtons

• NASA Mars Spirit rover (2004)

19

◦ temporarily disabled due to too many files on flash

drive

◦ Constantly rebooting

◦ Radio could understand some commands directly,

could reboot with flash disabled.

◦ Fixed when deleted some unneeded files.

◦ Eventually reformat.

◦ Issue is 90 day design period, lasted years (until 2010)

• Phobos-Grunt (2012)

◦ Bit flip in memory caused it to crash before firing

rockets to Mars

20

◦ Entered safe mode waiting for command

◦ Antennas not deployed until after rocket firing

◦ Could not receive command to leave safe mode.

• ExoMars Schiaparelli Lander (2016)

◦ Bad data to inertial measurement unit for 1 second

◦ thought this meant it was below ground level, released

parachute when still 3.7km up.

◦ Had valid data from radar

• Boeing Starliner OTF-1 flight issues, lack of proper

testing (2019)

21

Medical Example

• Therac-25 radiation treatment machine, 1985-1987

• 6 accidents, patients given 100x dose. Three died

High power beam activated w/o spreader too.

Older machines had hardware interlock, this one in

software. Race condition. If 8-bit counter overflow just

as entering manual over-ride, it would happen.

• Triggering the bug

◦ To trigger, had to press X (mistake), up (to correct),

E (to set proper) then ”Enter” all within 8 seconds.

22

This was considered an improbable series of keypresses.

◦ This missed during testing as it took a while for

operators to get used to using machines enough to

type that fast.

◦ Used increment rather than move to set flag, this

meant sometimes it wrapped from 255 to 0, disabling

safety checks

◦ Written in Assembly Language

Things that went wrong with design

◦ Software not independently reviewed

◦ No reliability modeling or risk management

23

◦ Something wrong: Printed “MALFUNCTION” and

error number 1 to 64 which was not documented in

manual. Press P to clear.

◦ Operators not believe complaints from patients.

◦ The setup was not tested until after it was installed at

hospital.

◦ cut-and-pasted software from earlier model that had

hardware interlocks

◦ Concurrent (parallel) operation with race conditions

24

Another Medical Example

• Devices like pacemakers, how does a doctor reprogram

them?

• Are they password protected?

25

Financial

• Knight Capital. Upgrade 7 of 8 machines, missed last.

Re-used a flag definition with new software. Caused

massive selloff, $440 million

26

Power

• 2003 Blackout

◦ Power plant fail. Cause more current down

transmission lines in Ohio. Heat, expand, touch tree,

short out.

◦ Race condition in Unix XA/21 management system,

so alarms not go off

◦ Eventually primary system fail as too many alarms

queue up

◦ Backup server also fail

27

◦ During failure, screens take 59s (instead of 1s) to

update

◦ Blackout of most of NY and a lot of north east.

28

Space Shuttle Design

• https://www.nasa.gov/mission_pages/shuttle/flyout/

flyfeature_shuttlecomputers.html

• Issues normal embedded systems don’t have: Vibration

at liftoff, Radiation in Space

• If computer stopped for more than 120ms, shuttle could

crash

• “Modern” update in 1991: 1MB Ram, 1.4MIPS. Earlier

was 416k and 1/3 as fast and twice as big

• Change to code, 9 months testing in simulator, 6 months

29

https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlec omputers.html
https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlec omputers.html

more extensive testing

• 24 years w/o in-orbit SW problem needing patches

• 12 year stretch only 3 SW bugs found

• 400k lines of code

• HAL/S high-order assembly language (high-level

language similar to PL/I)

• PASS software – runs tasks. Too big to fit in memory

at once

• BFS – backup flight software. Bare minimum to takeoff,

stay in orbit, safely land, fits in memory, monitors pASS

during takeoff/landing Written by completely different

30

team.

• 28 months to develop new version

• IBM

• Extensive verification. One internal pass, one external

• 4 computers running PASS, one running BFS

• Single failure mission can continue; still land with two

failures

• 4 computers in lock-step, vote, defective one kicked out

31

