
ECE 471 – Embedded Systems
Lecture 28

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

10 November 2021

http://web.eece.maine.edu/~vweaver

Announcements

• If you need any parts for your project, let me know

• Office hours (1pm-2pm) cancelled today so I can attend

a MCECIS architecture meeting. If you need anything

stop by later or e-mail me.

1

Homework 8 – Code

• Error checking. Exit if cannot open. If you don’t, can

segfault if try to fscanf a NULL FILE*

• Returning -1 on error might be bad idea

• What to report on error? What’s an invalid temperature?

Not just unlikely? (Below Absolute zero)

• If using streams (FILE *fff), on fopen() error it returns

NULL, not -1.

• Be sure to close files, otherwise leak file descriptors Be

careful if multiple exit points, must close at all (goto)

2

• Be careful with your 9/5 Fahrenheit conversion!

• Finding a file using C. opendir() readdir(), horrible

interface

Bit of a tangent on the downsides of the readdir()

interface

3

HW#8 – Questions

• Why need Vdd? To provide enough current for this

particular chip needs extra current if you want parasite

mode.

You can try without Vdd but you will always read out

85C.

Manual suggests MOSFET, but apparently it’s possible

on Pi if use 4.7k resistor as well as “strong-pullup=y”

kernel command line option.

• Because of distance, 1-wire

4

• shell script

◦ #!/bin/sh should be first line (magic number)

◦ Trouble if edit on windows, why (linefeed vs carriage

return)

shebang description

◦ Making executable with chmod

◦ Default shell, can put other things there, like python

or perl, etc, even ARM emulator

◦ sh vs bash

5

Spacecraft

• Mariner 1 (1962) – rocket off course due to

mis-transcribed specification into FORTRAN, missing

overbar

• Apollo 11 (1969) – landing on moon.

◦ 36k ROM (rope), 2k RAM, 70lbs, 55W, 5600 3-input

NOR

◦ Processor normally loaded with 85% load. DELTAH

program run which take 10%. But buggy radar device

was stealing 13% even though in standby mode.

6

◦ Multiple 1202 overload alarms

◦ Mini real-time OS with priority killed low-priority tasks

so things still worked.

• Ariane 5 Flight 501 (1996) – famous. $370 million.

◦ Old code copied from Ariane 4. Horizontal acceleration

◦ Could not trigger on Ariane 4 (accel never that large)

◦ Could trigger on more powerful Ariane 5

◦ Conversion from 64-bit float to 16-bit signed int

overflowed. Trap

◦ Primary guidance computer crashed

◦ Secondary computer, but ran same code, crashed

7

◦ Sent debug messages after crash, autopilot read those

as velocity data

◦ Destructed 37s after launch

◦ Written in ADA

• NASA Mars Polar Lander (1999)

◦ likely mistook turbulence vibrations for landing and

shut off engine 40m above surface

• NASA Mars Climate Orbiter

◦ ground software using lbf (pound/foot) units, craft

expecting Newtons

• NASA Mars Spirit rover (2004)

8

◦ temporarily disabled due to too many files on flash

drive

◦ Constantly rebooting

◦ Radio could understand some commands directly,

could reboot with flash disabled.

◦ Fixed when deleted some unneeded files.

◦ Eventually reformat.

◦ Issue is 90 day design period, lasted years (until 2010)

• Phobos-Grunt (2012)

◦ Bit flip in memory caused it to crash before firing

rockets to Mars

9

◦ Entered safe mode waiting for command

◦ Antennas not deployed until after rocket firing

◦ Could not receive command to leave safe mode.

• ExoMars Schiaparelli Lander (2016)

◦ Bad data to inertial measurement unit for 1 second

◦ thought this meant it was below ground level, released

parachute when still 3.7km up.

◦ Had valid data from radar

• Boeing Starliner OTF-1 flight issues (2019-2021)

◦ Lack of full-stack integration testing meant the capsule

thought it was 11 hours further in mission than it was,

10

firing engines wildly and using up most propelant

◦ Last-minute firmware update saved the landing

◦ Earlier problem with improperly packed parachute

◦ Next try in 2021 last-minute abort due to valves rusting

shut

11

Medical Example

• Therac-25 radiation treatment machine, 1985-1987

• 6 accidents, patients given 100x dose. Three died

High power beam activated w/o spreader too.

Older machines had hardware interlock, this one in

software. Race condition. If 8-bit counter overflow just

as entering manual over-ride, it would happen.

• Triggering the bug

◦ To trigger, had to press X (mistake), up (to correct),

E (to set proper) then ”Enter” all within 8 seconds.

12

This was considered an improbable series of keypresses.

◦ This missed during testing as it took a while for

operators to get used to using machines enough to

type that fast.

◦ Used increment rather than move to set flag, this

meant sometimes it wrapped from 255 to 0, disabling

safety checks

◦ Written in Assembly Language

Things that went wrong with design

◦ Software not independently reviewed

◦ No reliability modeling or risk management

13

◦ Something wrong: Printed “MALFUNCTION” and

error number 1 to 64 which was not documented in

manual. Press P to clear.

◦ Operators not believe complaints from patients.

◦ The setup was not tested until after it was installed at

hospital.

◦ cut-and-pasted software from earlier model that had

hardware interlocks

◦ Concurrent (parallel) operation with race conditions

14

Another Medical Example

• Devices like pacemakers, how does a doctor reprogram

them?

• Are they password protected?

15

Financial

• Knight Capital. Upgrade 7 of 8 machines, missed last.

Re-used a flag definition with new software. Caused

massive selloff, $440 million

16

Power

• 2003 Blackout

◦ Power plant fail. Cause more current down

transmission lines in Ohio. Heat, expand, touch tree,

short out.

◦ Race condition in Unix XA/21 management system,

so alarms not go off

◦ Eventually primary system fail as too many alarms

queue up

◦ Backup server also fail

17

◦ During failure, screens take 59s (instead of 1s) to

update

◦ Blackout of most of NY and a lot of north east.

18

Example of Good Design – Space Shuttle
Computer

• https://www.nasa.gov/mission_pages/shuttle/flyout/

flyfeature_shuttlecomputers.html

• Issues normal embedded systems don’t have: Vibration

at liftoff, Radiation in Space

• If computer stopped for more than 120ms, shuttle could

crash

• “Modern” update in 1991: 1MB Ram, 1.4MIPS. Earlier

was 416k and 1/3 as fast and twice as big

19

https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlec omputers.html
https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlec omputers.html

• Change to code, 9 months testing in simulator, 6 months

more extensive testing

• 24 years w/o in-orbit SW problem needing patches

• 12 year stretch only 3 SW bugs found

• 400k lines of code

• HAL/S high-order assembly language (high-level

language similar to PL/I)

• PASS software – runs tasks. Too big to fit in memory

at once

• BFS – backup flight software. Bare minimum to takeoff,

stay in orbit, safely land, fits in memory, monitors pASS

20

during takeoff/landing Written by completely different

team.

• 28 months to develop new version

• IBM

• Extensive verification. One internal pass, one external

• 4 computers running PASS, one running BFS

• Single failure mission can continue; still land with two

failures

• 4 computers in lock-step, vote, defective one kicked out

21

