
ECE 471 – Embedded Systems
Lecture 29

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

12 November 2021

http://web.eece.maine.edu/~vweaver


Announcements

• Don’t forget HW#9 due next Friday

• Midterm next Friday

• Project status report due 22nd (Monday before

Thanksgiving)

• Demosplash demoparty starting tonight

1



HW#9 – Modular Code

• What is modular code?

• In C you can compile each C file into its own object file,

link together at end

• Each C file can act as self-contained module

• Can make code-reuse easier, can treat like a library

• API defined in a header .h file

2



• Can be easier to follow code than in one huge program

• Easier when working in shared git repository

3



Another Few Software Disaster Case
Studies

4



Intentionally Buggy Code?

• There’s ethics when programming

• What if company wants you to code Dark Patterns?

• Privacy? Data Logging? Tracking?

• Unintentional security leaks: fitness trackers giving away

military locations

• Thermostats: forget to change password if move or

divorce, others now control your heating

• Amazon/Google devices, always listening in your house

• Web-cameras everywhere

5



Code Safety Standards

• Avionics: DO-178C (1992 for B)

• Industrial: IEC 61508 (1998)

• Railway: CENELEC EN 50128 (2001)

• Nuclear: IEC 61513 (2001)

• Medical: IEC 62304 (2006)

• Automotive: ISO 26262 (2011)

6



Code Safety Standards

• Is it easy to get a hold of copies of these?

7



Aviation

• DO-178B / DO-178C

• Software Considerations in Airborne Systems and

Equipment Certification

– Catastrophic: fatalities, loss of plane

– Hazardous: negative safety, serious/fatal injuries

– Major: reduce safety, inconvenience or minor injuries

– Minor: slightly reduce safety, mild inconvenience

– No Effect: no safety or workload impact

8



Automotive ISO 26262

• What is a document like this like?

• Vocab and definitions

• Management

• Safety Life Cycle

• Supporting processes

• Safety Analysis

• Risk Strategy

• Severity

◦ S0 – No injuries

9



◦ S1 – No injuries

◦ S2 – Severe injuries

◦ S3 – Not survive-able

• Exposure

◦ E0 – Unlikely to Happen

◦ ...

◦ E4 – High probability

• Controllability

◦ C0 – Controllable

◦ ...

◦ C3 – Uncontrollable

10



• Look up those in a matrix so you know how to assess

risk, know how important to fix, know what resources to

apply

11



Medical Response

• IEC 62304 – medical device software – software lifecycle

◦ Quality management system – establish the

requirements needed for such a device, then design

methods to be sure it meets these

◦ Avoid reusing software of unknown pedigree (don’t

just cut and paste from stackoverflow)

◦ Risk management – determining what all the risks

involved are, then determine ways to avoid or minimize

them

12



◦ Software safety classification

Class A: no injury possible

Class B: Nonserious injury possible

Class C: serious injury or death possible

Software sorted into these areas. Class A do not require

the same precautions as the others.

13



Other notes

• Top down vs Bottom up Design

Spec out whole thing and how they work first

Start with core part and just keep adding to it until it

works

• Requirements/Specifications?

14



Writing Good (Embedded) C Code

• Various books

• Comment your code!

• Strict, common code formatting (indentation)

• More exact variable types (int32 t not int) Size can vary

on machine, and on operating system

• Subset to avoid undefined behavior

15



• Tool that enforces the coding standards

• Good to write safe code even if it isn’t meant for a safe

application. Why? Good practice. Also who knows who

or when your code might be copied into another project.

16



MISRA

• MISRA: Guidelines for the Use of the C Language
in Critical Systems

• Motor Industry Software Reliability Association

• Guidelines: Mandatory, Required, Advisory

• Some sample guidelines

◦ Avoid compiler differences int (16 or 32 bit?) int32 t

◦ Avoid using functions that can fail (malloc()) allocate

memory at beginning of program not throughout

◦ Maintainable code, comments, coding style (see

17



below)

• Compliance

◦ All mandatory rules must be met

◦ All required rules must have formal deviation

• Deviation

◦ Must make a format explanation for why deviation is

necessary

◦ Prove you’ve thought about the issue

• MISRA 2012 has 143 rules, 16 directives

• NOTE: YOU CAN STILL WRITE BAD CODE EVEN

WHEN FOLLOWING THIS

18



It just makes it easier to write good maintainable code.

19



C Style

• What can C look like?

IOCCC (International Obfuscated C Code Competition)

• Variable style, CamelCase, under score, Hungarian

Notation (arru8NumberList)

• Indentation (tabs vs spaces)

• Curly braces on same or next line

• Comment style

• Auto-generated documentation from comments

20



Good Test Practices

• Unit testing

• Test Driven Development – tests written before the code

happens, needs to pass the tests before done

• Fuzzing

• Device Hardening?

21



Good Documentation Practices

• Comment your code

• Write documentation! Make sure it matches code!

There are some tools that can auto-generate

documentation from special code comments

• Use source control (git, subversion, mercurial)

• Use good commit messages in your source control

22



Space Shuttle Design

• https://www.nasa.gov/mission_pages/shuttle/flyout/

flyfeature_shuttlecomputers.html

• Issues normal embedded systems don’t have: Vibration

at liftoff, Radiation in Space

• If computer stopped for more than 120ms, shuttle could

crash

• “Modern” update in 1991: 1MB Ram, 1.4MIPS. Earlier

was 416k and 1/3 as fast and twice as big

• Change to code, 9 months testing in simulator, 6 months

23

https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlec omputers.html
https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlec omputers.html


more extensive testing

• 24 years w/o in-orbit SW problem needing patches

• 12 year stretch only 3 SW bugs found

• 400k lines of code

• HAL/S high-order assembly language (high-level

language similar to PL/I)

• PASS software – runs tasks. Too big to fit in memory

at once

• BFS – backup flight software. Bare minimum to takeoff,

stay in orbit, safely land, fits in memory, monitors pASS

during takeoff/landing Written by completely different

24



team.

• 28 months to develop new version

• IBM

• Extensive verification. One internal pass, one external

• 4 computers running PASS, one running BFS

• Single failure mission can continue; still land with two

failures

• 4 computers in lock-step, vote, defective one kicked out

25



SpaceX Falcon 9

• Linux – on dual core x86 systems

• Three each, vote

• Flight software in C/C++

• Dragon displays in Chromium+JS

26


