
ECE 471 – Embedded Systems
Lecture 31

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

17 November 2021

http://web.eece.maine.edu/~vweaver

Announcements

• HW#9 due Friday

• You can start turning in parts now (assuming you don’t

need them for your project)

you can keep the jumper wires

• Project status report due Monday. Not long:

◦ A one-line statement of your project topic

◦ A short summary of the progress you’ve made so far

◦ List any parts you need that you don’t have yet

◦ List if you’re willing to present early (Friday the 3rd,

1

Monday 6th or Wednesday 8th vs Friday the 10th)

(there will be some bonus for presenting early)

2

Midterm Review

3

Midterm #2 Review

• Booting on the Pi

◦ What a bootloader does

◦ Why Pi is unusual

• Real Time

◦ Definitions

◦ Is this hard, soft, firm

• i2c/SPI/1-wire

◦ Know the tradeoffs between i2c, SPI, 1-wire

◦ Be able to follow the C code for them

4

• Security

◦ Buffer overrun, why it is bad

• Coding Practices

◦ Be aware of the case studies we suggested

◦ Know of some of the recommended ways to write safer

C code

• You are allowed to bring 1 page of notes to the midterm

5

More Embedded Board Busses/Interfaces

6

Starting Programs at Boot

• init process starts first

• Traditionally would start various shell scripts under /etc

(the name and order of these can vary a lot)

• Possibly with advent of systemd this will change

• Currently you can still put things you want to run at

start in /etc/rc.local

7

Wii Nunchuck

• Fairly easy to interface

• Put onto i2c bus. Device 0x52

• Send handshake to initialize. Use longer one

(0xf0/0x55/0xfb/0x00) not the simpler one you might

find(0x40/0x00). This works on generic nunchucks and

possibly also disables encryption of results.

• To get values, send 0x00, usleep a certain amount, and

read 6 bytes. This includes joy-x, joy-x, accelerometer

8

x/y/z and c and z button data. More info can be found

online.

byte0 = joy-x, byte1 = joy-y, byte2 = top8 acc x, byte3

= top8 acc y, byte4 = top8 acc z, byte 5 is bottom 2

z,y,x then button c and z (inverted?)

9

SD/MMC

• MultiMediaCard (MMC) 1997

• Secure Digital (SD) is an extension (1999)

• SDSC (standard capacity), SDHC (high capacity), SDXC

(extended capacity), SDIO (I/O)

• Standard/Mini/Micro sizes

• SDHC up to 32GB, SDCX up to 2TB

• Support different amounts of sustained I/O. Class rating

2, 4, 6, 10 (MB/s)

• Patents. Need license for making.

10

SD/MMC Hardware Interface

• 9 pins (8 pins on micro)

• Starts in 3.3V, can switch to 1.8V

• Write protect notch. Ignored on pi?

11

SD/MMC Software Interface

• SPI bus mode

• One bit mode – separate command and data channels

• Four-bit mode

• Initially communicate over 1-bit interface to report sizes,

config, etc.

• DRM built in, on some boards up to 10% of space to

handle digital rights

12

SDIO

• SDIO – can have I/O like GPS, wireless, camera

• Can actually fit full Linux ARM server on a wireless

SDIO card

13

eMMC

• eMMC = like SD card, but soldered onto board

14

Linux and Keyboard

• Old ps/2 keyboard just a matrix of keys, controlled by a

small embedded processor.

Communication via a serial bus. Returns “keycodes”

when keypress and release and a few others.

• Many modern keyboards are USB, which requires full

USB stack. To get around needing this overhead (for

BIOS etc) support bit-bang mode. OS usually has

abstraction layer that supports USB keyboards same as

old-style

15

• Linux assumes “CANONICAL” input mode, i.e. like a

teletype. One line at a time, blocking input, wait until

enter pressed.

• You can set non-CANONICAL mode, async input, and

VMIN of 1 to get reasonable input for a game. Arrow

keys are reported as escape sequences (ESCAPE-[-A for

up, for example).

• Even lower-level you can access “RAW” mode which

gives raw keycode events, etc.

• See the tcgetattr() and tcsetattr() system calls

• There are libraries like ncurses that abstract this a bit.

16

Also GUI and game libraries (SDL).

17

Faking Linux Input Events

• How to insert input events into Linux, i.e. have a

software program fake keyboard/mouse/joystick events.

• Linux supports a ”uinput” kernel driver that lets you

create user input.

• There is some info on a library that makes this easier

here: http://tjjr.fi/sw/libsuinput/

• It has examples for keyboard and mouse. Joystick should

be possible but there’s no sample code provided.

• Python wrappers seem to exist too.

18

http://tjjr.fi/sw/libsuinput/

Camera Port

• The SoC has dedicated hardware for driving cameras

• 5megapixel, CSI port (Camera Serial Interface) plus i2c

bus to command it.

• Can read data in parallel, directly, without needing USB

overhead.

• These chips often used in cell-phones, so makes sense to

have support for camera-phone without extra chip being

needed.

19

Touchscreen Display Port

20

UART – serial port

• Note: Asynchronous, no clock (unlike USART)

how do both sides agree on speed?

• Often useful on embedded boards and old systems, might

be only way to reliably connect

• RS-232, originally for teletypes

• 3-15V high, -3 to -15V low

• start/stop bits, parity, bit-size

• Hardware vs Software flow control

• Speeds 300bps - 115000bps and beyond

21

• 50feet (15m) w/o special cables

• 3-pin version (transmit, receive ground). Also 5-pin HW

flow control (CTS/RTS). Can have 2-pin version if only

want to transmit

• These days often hook up USB connector

• What does 9600N81 mean?

22

Pi Serial Ports

• Raspberry Pi has two serial ports, good one and lousy

one

They switched them up with Pi3

• Pi does TTL (5v/0) not RS232

• Does support HW flow control, but need to activate

those pins custom, is a bit complicated

• Use TTL to USB serial converter usually.

Tell story of the prolific bricking the firmware?

23

Pi SMI

• https://iosoft.blog/2020/07/16/raspberry-pi-smi/

• Secondary Memory Interface

• Available on Pis

• Allows creating wide parallel bus out of GPIOs

• Not well documented

24

https://iosoft.blog/2020/07/16/raspberry-pi-smi/

Bluetooth

• Basic unit: piconet, master node and up to seven

active slave nodes within 10m

• Many can exist in an area, and can be connected by a

bridge. Connected piconets are called a scatternet

• There can also be up to 255 “parked” nodes in a picnoet

• When parked, can only respond to activation on beacon

• Hold and siff?

• Slaves designed to be cheap, so dumb. Master is smart

and runs them. slave/slave communication not possible

25

• Master broadcasts clock 312.5us. Master transmits in

even, slave in odd.

• Radio layer – 2.4GHz, 10 meters. 79 channels of 1MHz.

• pairing

• Bluetooth V1.1 has 13 different application protocols.

• Bluetooth 4.0 (Bluetooth Low Energy) (2010)

◦ 25Mbps/200 feet

◦ Entirely new stack, designed for low power rapid setup

links

◦ Not backwards compatible, but same frequency range

◦ New profiles

26

• Linux interface: depends on type. Filetransfer/obex.

Audio (looks like an audio driver) network device, serial

device

27

Bluetooth and Linux

• Two competing stacks, BlueZ and Affix

sudo bluetoothctl

[sudo] password for vince:

[NEW] Controller B8:27:EB:52:DD:E8 linpack-test [default]

[bluetooth]# power on

Changing power on succeeded

[bluetooth]# scan on

Discovery started

[CHG] Controller B8:27:EB:52:DD:E8 Discovering: yes

28

[NEW] Device AC:37:43:89:4C:02 HTC BS 02CA47

[NEW] Device AC:37:43:89:2F:86 HTC BS 86B06E

[CHG] Device AC:37:43:89:2F:86 RSSI: -90

[bluetooth]# scan on

Failed to start discovery: org.bluez.Error.InProgress

[bluetooth]# connect AC:37:43:89:4C:02

• obexpushd. Appears as serial port?

29

