ECE 471 – Embedded Systems Lecture 9

Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu

19 September 2022

Announcements

• HW#3 was assigned

HW3 Notes – Printing an Integer

- Writing int to string conversion is a complex task There are lots of ways to do it.
- When would you ever need code like this?
 In extreme embedded systems cases you might not have a printf() but still want to debug

HW3 Notes – Integer to String Algorithm

- Take integer
- Divide by 10, put remainder into array backwards
- Take quotient as next source and repeat until zero
- Also need to convert to ASCII. (by adding 0x30 or '0')

HW3 Notes – ASCII

- American Standard Code for Information Interchange
- Old (late 1960s) standard for mapping text characters to numbers
- 7-bits (top bit either 0 or used for other purposes)
- Below 32 are control chars (like linefeed)
- 32 is space
- 48-57 is 0-1
- 65-90 is A-Z, 97-122 is a-z (bit 5 flipped)

HW3 Notes – Unicode

- what about other languages?
- Unicode, in theory 32 bit should hold all possible
- Windows and Java used 16-bit chars, but turned out not to be enough
- UTF-8 is interesting hack where bottom 127 chars map to ASCII, but when top bit set starts a complicated escape sequence that allows encoding any unicode value in 1 to 5 bytes
- still gives benefit to American English

HW3 Notes – Division if no Divide?

- Original Pi-1B had ARM1176 without a divide instruction
- To be backwards compatible even new Pis are compiled w/o divide even though new chips have support
- Various ways in software. Iterative subtraction. Shift and subtract.
- For constant values you can divide by instead multiplying by the reciprocal
- gcc will do this. It use 32.32 fixed point multiply by

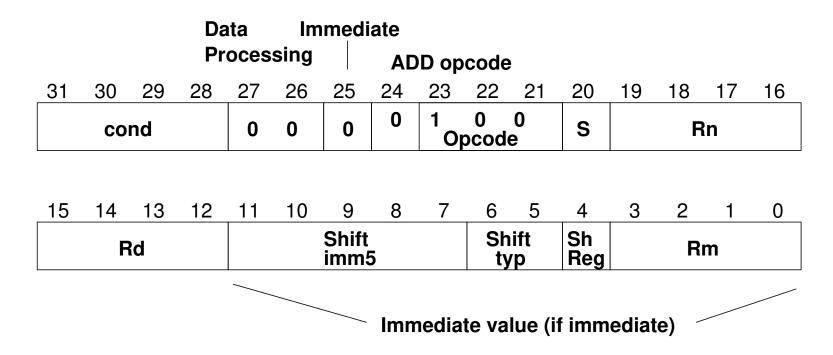
1/10. (429496730). ARM has umull instruction that will do a 32x32 multiply and give you the top half of the 64-bit result.

HW3 Notes – Corner cases?

- Leading zero removal
- Signed numbers (put a '-' in front?)

Really Brief Overview of ARM32 Assembly

- There's an Appendix at the end of these notes which covers ARM32 Assembly in more detail
- You have memory, registers, ALU, Program Counter, and flags (Negative, Zero, Carry, oVerflow): how do you turn this into a functioning program?


Why code in Assembly?

- Small binaries still useful on small embedded boards
- Optimal performance still good all systems, but be careful as newer chips might change the optimization paramaters

ARM32 encoding

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

ARM32 Assembly – Register moves

- Moving register values around
- mov r0,r1 r0 is destination
- mov r0,#0 move immediate value
- There are also msr and mrs to move into special system varilables

ARM32 Assembly – Load/Stores

- ARM32 is load/store meaning have to load into register before using values
- ldrb r0, [address] load byte into r0 from pointer
- strb r0, [address] store byte from r0 to memory at pointer
- can support different widths (ldr, ldrb, ldrh, etc)
- sign vs zero extend (lsrsb)
- Complex addressing modes. register, r1+r2, r1+r2+offset, auto-increment, etc

ARM32 Addressing Modes

- Regular
 - o ldrb r1, [r2] @ register
 - o ldrb r1, [r2,#20] @ register/offset
 - o ldrb r1, [r2,+r3] @ register + register
 - o ldrb r1, [r2,-r3] @ register register
 - o ldrb r1, [r2,r3, LSL #2] @ register +/- register, shift
- Pre-index. Calculate address, load, then store back
 oldrb r1, [r2, #20]! @ pre-index. Load from

r2+20 then write back into r2

- o ldrb r1, [r2, r3]! @ pre-index. register
- o ldrb r1, [r2, r3, LSL #4]! @ pre-index. shift
- Post-index: load from base, then add in and write new value to base
 - ldrb r1, [r2],#+1 @ post-index. load, then add value to r2
 - o ldrb r1, [r2],r3 @ post-index register
 - o ldrb r1, [r2],r3, LSL #4 @ post-index shift

ARM32 Assembly – Arithmetic

- add, sub, ...
- add r0,r1,r2
- add r0,r1,#0
- Barrel shifter allows complex stuff like add r0,r1,r2
 LSL #4 to optionally shift/rotate

ARM32 Assembly – Logic

- and, orr, eor
- and r0,r1,r2
- eor r0,r1,#0
- Barrel shifter too

ARM32 Assembly – Comaprison

- cmp r0,r1 sets flags
- Same as a subtract but doesn't update destination
- Can do same thing with arithmetic if you add 'S' adds r0,r1,r2

ARM32 Assembly – Branches

- Branch based on previous comparison
- beq, blt, bgt, etc
- b unconditional
- bl branch and link, calls a function and puts return value in special LR (link register)

ARM32 Assembly – Stack Manipulation

 Old "store multiple" instructions, really powerful, can use any arbitrary reg as stack, arbitrary number of registers to push/pop, can change direction and post or pre-increment

ldmia sp!, {r0, r1, r2, r3, ip, pc}^

- \bullet Modern also supports push {r0, r1} and pop {r0,r1}
- On ARM32 Program Counter (PC) is a regular register. Code will often push {r0, LR} at beginning of function

to save return, then pop $\{r0, PC\}$ at end which puts LR back into PC to return without an extra bl LR instruction

Conditional Execution

Why are branches bad?			
if (>	< == 5)	
a-	+=2;		
else			
b-	-=2;		
	cmp	r1, $\#5$	
	bne	else	
	add	r2,r2,#2	
	b	done	
else:			
	sub	r3,r3,#2	
done:			

@ equivalent w/o branches

cmp	r1, $\#5$
addeq	r2 , r2 ,#2
subne	r3,r3,#2

Appendix: Extra notes on ARM32 Assembly

Setting Flags

- add r1,r2,r3
- adds r1,r2,r3 set condition flag
- addeqs r1,r2,r3 set condition flag and prefix compiler and disassembler like addseq, GNU as doesn't?

Conditional Execution

done:

cmp r1, #5
addeq r2,r2,#2
subne r3,r3,#2

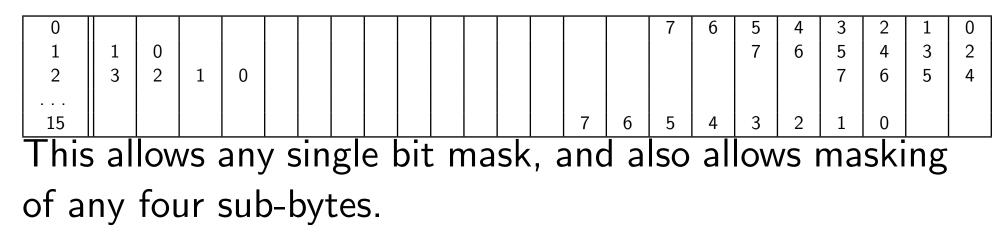
Arithmetic Instructions

Operate on 32-bit integers. Most of these take optional s to set status flag

adc	v1	add with carry
add	v1	add
rsb	v1	reverse subtract (immediate - rX)
rsc	v1	reverse subtract with carry
sbc	v1	subtract with carry
sub	v1	subtract

Logic Instructions

and	v1	bitwise and
bfc	??	bitfield clear, clear bits in reg
bfi	??	bitfield insert
bic	v1	bitfield clear: and with negated value
clz	v7	count leading zeros
eor	v1	exclusive or (name shows 6502 heritage)
orn	v6	or not
orr	v1	bitwise or


Register Manipulation

mov, movs	v1	move register
mvn, mvns	v1	move inverted

Loading Constants

 In general you can get a 12-bit immediate which is 8 bits of unsigned and 4-bits of even rotate (rotate by 2*value).

• You can specify you want the assembler to try to make

the immediate for you: ldr r0,=0xff

ldr r0,=label

If it can't make the immediate value, it will store in nearby in a literal pool and do a memory read.

Barrel Shift in ALU instructions

If second source is a register, can optionally shift:

- LSL Logical shift left
- LSR Logical shift right
- ASR Arithmetic shift right
- ROR Rotate Right
- RRX Rotate Right with Extend
 bit zero into C, C into bit 31 (33-bit rotate)
- Why no ASL?
- Adding s lsls, lsrs puts shifted out bit into C.

- shift pseudo instructions
 lsr r0, #3 is same as mov r0,r0 LSR #3
- For example:

add r1, r2, r3, lsr #4 r1 = r2 + (r3>>4)

 Another example (what does this do): add r1, r2, r2, lsl #2

Multiply Instructions

Fast multipliers are optional For 64-bit results,

mla	v2	multiply two registers, add in a third (4 arguments)
mul	v2	multiply two registers, only least sig 32bit saved
smlal	v3M	$32 \times 32 + 64 = 64$ -bit (result and add source, reg pair rdhi,rdlo)
smull	v3M	$32 \times 32 = 64$ -bit
umlal	v3M	unsigned $32 \times 32 + 64 = 64$ -bit
umull	v3M	unsigned 32x32=64-bit

Divide Instructions

- On some machines it's just not there. Original Pi. Why?
- What do you do if you want to divide?
- Shift and subtract (long division)
- Multiply by reciprocal.

Prefixed instructions

Most instructions can be prefixed with condition codes:

EQ, NE	(equal)	Z==1/Z==0
MI, PL	(minus/plus)	N==1/N==0
HI, LS	(unsigned higher/lower)	C = = 1&Z = = 0/C = = 0 Z = = 1
GE, LT	(greaterequal/lessthan)	N = V/N! = V
GT, LE	(greaterthan, lessthan)	N = V&Z = 0/N! = V Z = 1
CS,HS, CC,LO	(carry set,higher or same/clear)	C==1,C==0
VS, VC	(overflow set / clear)	V==1,V==0
AL	(always)	(this is the default)

Load/Store Instructions

ldr	v1	load register	
ldrb	v1	load register byte	
ldrd	v5	load double, into consecutive registers (Rd even)	
ldrh	v1	load register halfword, zero extends	
ldrsb	v1	load register signed byte, sign-extends	
ldrsh	v1	load register halfword, sign-extends	
str	v1	store register	
strb	v1	store byte	
strd	v5	store double	
strh	v1	store halfword	

Addressing Modes

- Regular
 - o ldrb r1, [r2] @ register
 - o ldrb r1, [r2,#20] @ register/offset
 - o ldrb r1, [r2,+r3] @ register + register
 - o ldrb r1, [r2,-r3] @ register register
 - o ldrb r1, [r2,r3, LSL #2] @ register +/- register, shift
- Pre-index. Calculate address, load, then store back
 oldrb r1, [r2, #20]! @ pre-index. Load from

r2+20 then write back into r2

- o ldrb r1, [r2, r3]! @ pre-index. register
- o ldrb r1, [r2, r3, LSL #4]! @ pre-index. shift
- Post-index: load from base, then add in and write new value to base
 - ldrb r1, [r2],#+1 @ post-index. load, then add value to r2
 - o ldrb r1, [r2],r3 @ post-index register
 - o ldrb r1, [r2],r3, LSL #4 @ post-index shift

Why some of these?

- ldrb r1, [r2,#20] @ register/offset
 Useful for structs in C (i.e. something.else=4;)
- ldrb r1, [r2,r3, LSL #2] @ register +/- register, shift
 Useful for indexing arrays of integers (a[5]=4;)

Comparison Instructions

Updates status flag, no need for s

cmp	v1	compare (subtract but discard result)	
cmn	v1	compare negative (add)	
teq	v1	tests if two values equal (xor) (preserves carry)	
tst	v1	test (and)	

Control-Flow Instructions

Can use all of the condition code prefixes. Branch to a label, which is +/- 32MB from PC

b	v1	branch	
bl	v1	branch and link (return value stored in Ir)	
bx	v4t	branch to offset or reg, possible THUMB switch	
blx	v5	branch and link to register, with possible THUMB switch	
mov pc,lr	v1	return from a link	

Load/Store multiple (stack?)

In general, no interrupt during instruction so long instruction can be bad in embedded Some of these have been deprecated on newer processors

- Idm load multiple memory locations into consecutive registers
- stm store multiple, can be used like a PUSH instruction
- push and pop are thumb equivalent

Can have address mode and ! (update source):

- IA increment after (start at Rn)
- IB increment before (start at Rn+4)
- DA decrement after
- DB decrement before

Can have empty/full. Full means SP points to a used location, Empty means it is empty:

• FA – Full ascending

- FD Full descending
- EA Empty ascending
- ED Empty descending

Recent machines use the "ARM-Thumb Proc Call Standard" which says a stack is Full/Descending, so use LDMFD/STMFD.

What does stm SP!, {r0,lr} then ldm SP!, {r0,PC,pc} do?

System Instructions

- svc, swi software interrupt takes immediate, but ignored.
- mrs, msr copy to/from status register. use to clear interrupts? Can only set flags from userspace
- cdp perform coprocessor operation
- mrc, mcr move data to/from coprocessor
- ldc, stc load/store to coprocessor from memory

Co-processor 15 is the *system control coprocessor* and is used to configure the processor. Co-processor 14 is the debugger 11 is double-precision floating point 10 is singleprecision fp as well as VFP/SIMD control 0-7 vendor specific

Other Instructions

- swp atomic swap value between register and memory (deprecated armv7)
- ldrex/strex atomic load/store (armv6)
- wfe/sev armv7 low-power spinlocks
- pli/pld preload instructions/data
- dmb/dsb memory barriers

Pseudo-Instructions

adr	add immediate to PC, store address in reg
nop	no-operation

Fancy ARMv6

- mla multiply/accumulate (armv6)
- mls multiply and subtract
- pkh pack halfword (armv6)
- qadd, qsub, etc. saturating add/sub (armv6)
- rbit reverse bit order (armv6)
- rbyte reverse byte order (armv6)
- rev16, revsh reverse halfwords (armv6)
- sadd16 do two 16-bit signed adds (armv6)
- sadd8 do 4 8-bit signed adds (armv6)

- sasx (armv6)
- sbfx signed bit field extract (armv6)
- sdiv signed divide (only armv7-R)
- udiv unsigned divide (armv7-R only)
- sel select bytes based on flag (armv6)
- sm* signed multiply/accumulate
- setend set endianess (armv6)
- sxtb sign extend byte (armv6)
- tbb table branch byte, jump table (armv6)
- teq test equivalence (armv6)
- u* unsigned partial word instructions

Floating Point

ARM floating point varies and is often optional.

- various versions of vector floating point unit
- vfp3 has 16 or 32 64-bit registers
- Advanced SIMD reuses vfp registers
 Can see as 16 128-bit regs q0-q15 or 32 64-bit d0-d31
 and 32 32-bit s0-s31
- SIMD supports integer, also 16-bit?
- Polynomial?
- FPSCR register (flags)

