
ECE 471 – Embedded Systems
Lecture 15

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

3 October 2022

http://web.eece.maine.edu/~vweaver


Announcements

• HW#5 was posted

If you need an i2c display let me know

• Midterm is a week from Friday, the 14th
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Operating Systems Types

• Monolithic kernel – everything in one big address space.

Something goes wrong, lose it all. Faster

• Microkernel – separate parts that communicate by

message passing. can restart independently. Slower.

• Microkernels were supposed to take over the world.

Didn’t happen. (GNU Hurd?)

• Famous Torvalds (Linux) vs Tannenbaum (Minix)

flamewar
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Common Desktop/Server Operating
Systems

• UNIX derived

◦ Linux (clone imlpemented from scratch)

◦ FreeBSD / NetBSD / OpenBSD

◦ MacOS (FreeBSD/Nextstep heritage)

◦ Legacy (Irix/Solaris/AIX/etc.)

• Windows

• Obscure (BeOS/Haiku)
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Embedded Operating Systems

• Cellphone/Tablet

◦ Android (Linux)

◦ ChromeOS (Linux)

◦ Apple iOS

◦ Microsoft (WinCE/Mobile/Phone/RT/S/IoT (all

these have been discontinued))

In theory can install Windows 11 on a Raspberry Pi

• Networking

◦ OpenWRT (Linux)
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◦ Cisco iOS

• Real Time OS

◦ VXworks – realtime OS, used on many space probes

◦ QNX – realtime microkernel UNIX-like OS, owned by

Blackberry now

◦ ThreadX – found in Pi GPU

◦ FreeRTOS
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Embedded Linux Distributions

This list is horribly out of date.

• linaro – consortium that work on ARM software

• openwrt – small distro initially designed for wireless

routers

• yocto – Linux Foundation sponsored embedded distro

• maemo – embedded distro originally by Nokia (obsolete)

• MeeGo – continuation of maemo, also obsolete

• Tizen – Follow up on MeeGo, by Samsung and Intel

• Ängstrom – Merger of various projects

6



System Booting
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Boot Firmware

Provides booting, configuration/setup, sometimes provides

rudimentary hardware access routines.

Kernel developers like to complain about firmware authors.

Often mysterious bugs, only tested under Windows, etc.

• BIOS – legacy 16-bit interface on x86 machines

• UEFI – Unified Extensible Firmware Interface

ia64, x86, ARM. From Intel. Replaces BIOS

• OpenFirmware – old macs, SPARC

• LinuxBIOS
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Bootloaders

• Firmware doesn’t usually directly load Operating System

• Bootloader (relatively simple code, just smart enough to

load OS and jump to it) is loaded first

• Bootloader is often on a very simple filesystem (such as

FAT) as the code has to be simple (possibly even written

in assembly language)

• Bootloader is often just complex enough to load OS

kernel from disk/network/etc and jump to it
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Raspberry Pi Booting

• Unusual – GPU handles it

• Small amount of firmware on SoC

• ARM chip brought up inactive (in reset)

• Videocore loads first stage from ROM
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Raspberry Pi Booting (pre pi4)

• Videocore reads bootcode.bin from FAT partition on

SD card into L2 cache.

It’s actually a RTOS (real time OS) in own right

“ThreadX” (50k)

• This runs on videocard, enables SDRAM, then loads

start.elf (3M)

• This initializes things, the loads and boots Linux onto

ARM chip kernel.img. (also reads some config files

there first) (4M)
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Pi4 booting

• https://www.raspberrypi.org/documentation/hardware/raspberrypi/booteeprom.md

• SPI EEPROM holds equivelent of bootcode.bin, no

longer read from partition

• Why? SDRAM, PCIe USB, etc are more complex

• Supports network and USB booting which is much more

complex than just loading a file off of SD card
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Typical ARM booting

• The UBoot bootloader is common

• ARM chip runs first-stage boot loader (often MLO)

• Then loads second-stage (uboot)
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Why a FAT Partition?

• /boot on Pi is a legacy (40+ years old) File-Allocation

Table (FAT) filesystem

• Why FAT? (Simple, Low-memory, Works on most

machines, In theory no patents despite MS’s best

attempts (see exfat))

• The boot firmware (burned into the CPU) is smart

enough to mount a FAT partition
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Boot Methods

• Floppy

• Hard-drive (PATA/SATA/SCSI/RAID)

• CD/DVD

• USB

• Network (PXE/tftp)

• Flash, SD card

• Tape

• Networked tape

• Paper tape? Front-panel switches?

15



Disk Partitions

• Way to virtually split up disk.

• DOS GPT – old partition type, in MBR. Start/stop

sectors, type

• Types: Linux, swap, DOS, etc

• GPT had 4 primary and then more secondary

• Lots of different schemes (each OS has own, Linux

supports many). UEFI more flexible, greater than 2TB

• Why partition disks?

◦ Different filesystems; bootloader can only read FAT?
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◦ Dual/Triple boot (multiple operating systems)

◦ Old: filesystems can’t handle disk size
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Device Detection

• x86, well-known standardized platform. What windows

needs to boot. Can auto-discover things like PCI bus,

USB. Linux kernel on x86 can boot on most.

• Old ARM, hard-coded. So a rasp-pi kernel only could

boot on Rasp-pi. Lots of pound-defined and hard-coded

hw info.

• New way, device tree. A blob that describes the

hardware. Pass it in with boot loader, and kernel can use
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it to determine what hardware is available. So instead

of Debian needing to provide 100 kernels, instead just

1 kernel and 100 device tree files that one is chosen at

install time.

• Does mean that updating to a new kernel can be a pain.
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Detecting Devices

There are many ways to detect devices

• Guessing/Probing – can be bad if you guess wrong and

the hardware reacts poorly to having unexpected data

sent to it

• Standards – always knowing that, say, VGA is at address

0xa0000. PCs get by with defacto standards

• Enumerable hardware – busses like USB and PCI allow

you to query hardware to find out what it is and where
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it is located

• Hard-coding – have a separate kernel for each possible

board, with the locations of devices hard-coded in. Not

very maintainable in the long run.

• Device Trees – see next slide
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Devicetree

• Traditional Linux ARM support a bit of a copy-paste and

#ifdef mess

• Each new platform was a compile option. No common

code; kernel for pandaboard not run on beagleboard not

run on gumstix, etc.

• Work underway to be more like x86 (where until recently

due to PC standards a kernel would boot on any x86)

• A “devicetree” passes in enough config info to the kernel
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to describe all the hardware available. Thus kernel much

more generic

• Still working on issues with this.
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