
ECE 471 – Embedded Systems
Lecture 15

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

3 October 2022

http://web.eece.maine.edu/~vweaver


Announcements

• HW#5 was posted

If you need an i2c display let me know

• Midterm is a week from Friday, the 14th

1



Operating Systems Types

• Monolithic kernel – everything in one big address space.

Something goes wrong, lose it all. Faster

• Microkernel – separate parts that communicate by

message passing. can restart independently. Slower.

• Microkernels were supposed to take over the world.

Didn’t happen. (GNU Hurd?)

• Famous Torvalds (Linux) vs Tannenbaum (Minix)

flamewar

2



Common Desktop/Server Operating
Systems

• UNIX derived

◦ Linux (clone imlpemented from scratch)

◦ FreeBSD / NetBSD / OpenBSD

◦ MacOS (FreeBSD/Nextstep heritage)

◦ Legacy (Irix/Solaris/AIX/etc.)

• Windows

• Obscure (BeOS/Haiku)

3



Embedded Operating Systems

• Cellphone/Tablet

◦ Android (Linux)

◦ ChromeOS (Linux)

◦ Apple iOS

◦ Microsoft (WinCE/Mobile/Phone/RT/S/IoT (all

these have been discontinued))

In theory can install Windows 11 on a Raspberry Pi

• Networking

◦ OpenWRT (Linux)

4



◦ Cisco iOS

• Real Time OS

◦ VXworks – realtime OS, used on many space probes

◦ QNX – realtime microkernel UNIX-like OS, owned by

Blackberry now

◦ ThreadX – found in Pi GPU

◦ FreeRTOS

5



Embedded Linux Distributions

This list is horribly out of date.

• linaro – consortium that work on ARM software

• openwrt – small distro initially designed for wireless

routers

• yocto – Linux Foundation sponsored embedded distro

• maemo – embedded distro originally by Nokia (obsolete)

• MeeGo – continuation of maemo, also obsolete

• Tizen – Follow up on MeeGo, by Samsung and Intel

• Ängstrom – Merger of various projects

6



System Booting

7



Boot Firmware

Provides booting, configuration/setup, sometimes provides

rudimentary hardware access routines.

Kernel developers like to complain about firmware authors.

Often mysterious bugs, only tested under Windows, etc.

• BIOS – legacy 16-bit interface on x86 machines

• UEFI – Unified Extensible Firmware Interface

ia64, x86, ARM. From Intel. Replaces BIOS

• OpenFirmware – old macs, SPARC

• LinuxBIOS

8



Bootloaders

• Firmware doesn’t usually directly load Operating System

• Bootloader (relatively simple code, just smart enough to

load OS and jump to it) is loaded first

• Bootloader is often on a very simple filesystem (such as

FAT) as the code has to be simple (possibly even written

in assembly language)

• Bootloader is often just complex enough to load OS

kernel from disk/network/etc and jump to it

9



Raspberry Pi Booting

• Unusual – GPU handles it

• Small amount of firmware on SoC

• ARM chip brought up inactive (in reset)

• Videocore loads first stage from ROM

10



Raspberry Pi Booting (pre pi4)

• Videocore reads bootcode.bin from FAT partition on

SD card into L2 cache.

It’s actually a RTOS (real time OS) in own right

“ThreadX” (50k)

• This runs on videocard, enables SDRAM, then loads

start.elf (3M)

• This initializes things, the loads and boots Linux onto

ARM chip kernel.img. (also reads some config files

there first) (4M)

11



Pi4 booting

• https://www.raspberrypi.org/documentation/hardware/raspberrypi/booteeprom.md

• SPI EEPROM holds equivelent of bootcode.bin, no

longer read from partition

• Why? SDRAM, PCIe USB, etc are more complex

• Supports network and USB booting which is much more

complex than just loading a file off of SD card

12

https://www.raspberrypi.org/documentation/hardware/raspberrypi/booteeprom.md


Typical ARM booting

• The UBoot bootloader is common

• ARM chip runs first-stage boot loader (often MLO)

• Then loads second-stage (uboot)

13



Why a FAT Partition?

• /boot on Pi is a legacy (40+ years old) File-Allocation

Table (FAT) filesystem

• Why FAT? (Simple, Low-memory, Works on most

machines, In theory no patents despite MS’s best

attempts (see exfat))

• The boot firmware (burned into the CPU) is smart

enough to mount a FAT partition

14



Boot Methods

• Floppy

• Hard-drive (PATA/SATA/SCSI/RAID)

• CD/DVD

• USB

• Network (PXE/tftp)

• Flash, SD card

• Tape

• Networked tape

• Paper tape? Front-panel switches?

15



Disk Partitions

• Way to virtually split up disk.

• DOS GPT – old partition type, in MBR. Start/stop

sectors, type

• Types: Linux, swap, DOS, etc

• GPT had 4 primary and then more secondary

• Lots of different schemes (each OS has own, Linux

supports many). UEFI more flexible, greater than 2TB

• Why partition disks?

◦ Different filesystems; bootloader can only read FAT?

16



◦ Dual/Triple boot (multiple operating systems)

◦ Old: filesystems can’t handle disk size

17



Device Detection

• x86, well-known standardized platform. What windows

needs to boot. Can auto-discover things like PCI bus,

USB. Linux kernel on x86 can boot on most.

• Old ARM, hard-coded. So a rasp-pi kernel only could

boot on Rasp-pi. Lots of pound-defined and hard-coded

hw info.

• New way, device tree. A blob that describes the

hardware. Pass it in with boot loader, and kernel can use

18



it to determine what hardware is available. So instead

of Debian needing to provide 100 kernels, instead just

1 kernel and 100 device tree files that one is chosen at

install time.

• Does mean that updating to a new kernel can be a pain.

19



Detecting Devices

There are many ways to detect devices

• Guessing/Probing – can be bad if you guess wrong and

the hardware reacts poorly to having unexpected data

sent to it

• Standards – always knowing that, say, VGA is at address

0xa0000. PCs get by with defacto standards

• Enumerable hardware – busses like USB and PCI allow

you to query hardware to find out what it is and where

20



it is located

• Hard-coding – have a separate kernel for each possible

board, with the locations of devices hard-coded in. Not

very maintainable in the long run.

• Device Trees – see next slide

21



Devicetree

• Traditional Linux ARM support a bit of a copy-paste and

#ifdef mess

• Each new platform was a compile option. No common

code; kernel for pandaboard not run on beagleboard not

run on gumstix, etc.

• Work underway to be more like x86 (where until recently

due to PC standards a kernel would boot on any x86)

• A “devicetree” passes in enough config info to the kernel

22



to describe all the hardware available. Thus kernel much

more generic

• Still working on issues with this.

23


