
ECE 471 – Embedded Systems
Lecture 16

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

5 October 2022

http://web.eece.maine.edu/~vweaver


Announcements

• Midterm on 14th

• Don’t forget HW#5

• No need to hand displays back yet

1



Homework #4 Error Checking

• What do you do if there’s an error?

• Ignore it? Why could that be bad?

• Retry until it succeeds?

• Print an error message and continue?

Can you continue?

What if continuing with a bad file descriptor breaks

things?

What if printing too many error messages fills up a log,

swamps the screen, hides other errors?

2



• Good error message

Can’t be confused with valid input (airlock)

If displayed to user, make it easy to understand

• Print an error message and exit?

What if it’s a critical system?

• Crashing is almost never the right answer.

• Can get more info on error with errno / strerror()

3



Homework #4 Permissions

• We haven’t really discussed Linux permissions

• List file, “user” ”group” ”all”

• drwxr-xr-x

• Often in octal, 777 means everyone access

• Devices under /dev or /sysfs might be set to only root

or superuser

• Traditional UNIX /dev you can set with chown (to set

user/group) or chmod (to set permissions)

• Group under /etc/group, so gpio group

4



• Why is it better than using “sudo”? Why might I as

grader not want to run your code using “sudo” if I can

avoid it?

• How to set up sudo? /etc/sudoers file

5



Homework #4 – LED Blinking

• Blink frequency. Remember, 1Hz is 500ms on / 500ms

off

not 500us, not 1s

• Blink correct GPIO. Does it matter? Want to fire

engines, not engage self destruct.

6



Homework #4 – Switch

• Debouncing

◦ 100ms or even 10ms is long time

◦ Tricky as we are detecting levels not edges here

◦ Reading and only reporting if you say have 3 in a row

of save val

◦ Reading, sleeping a bit, then report the value after has

settled

◦ Just sleeping a long time after any change? If a short

glitch happens this might misreport.

7



◦ Sleep too long, might miss events

◦ Debounce if using interrupt-driven code

In that case debouncing might be to ignore repeated

changes if they happen too close together

8



Homework #4 – Something Cool

• How can you read/write at same time (say to let switch

activate LED)

• Need to make copy of data structures

• If you do re-use, make sure you close(), especially if you

open multiple times. Either will get EBUSY or else fd

leak

9



Homework #4 Question

• 5.a Why usleep? Less resources (not busy

sleeping), cross-platform (not speed-of-machine-

dependent), compiler won’t remove, other things can

run, power saving.

Be careful saying accuracy! usleep() guarantees a

minimum time delay, but it is best effort how long

the delay actually is. So if you really need *exact* time

delays you probably want some other interface.

• 5.b Layer of abstraction. In this case, not having

10



to bitbang the interface or know low-level addresses,

portability among machines.

ability to run WiringPi is not a benefit

• 6.a Machines from dmesg: 2022: Pi4 (3) Pi3B+ (1)

dmesg a good place to find error messages, etc. grep
• 6.b Kernel versions. Current Linus kernel (upstream) is
6.0
Uname syscall, what the parts mean

Linux linpack-test 4.14.50-v7+ #1122 SMP Tue Jun 19 12:26:26 BST 2018 armv7l GNU/Linux\\

Linux orvavista 4.5.0-2-amd64 #1 SMP Debian 4.5.5-1 (2016-05-29) x86_64 GNU/Linux\\

2022: 5.15.61 (1) 5.15.0 (1) (ubuntu?) 5.15.32 (1)

5.4.51 (1)

11



• 6.c. Disk space. Why -h? Human readable. what does

that mean? Why is it not the default? At least Linux

defaults to 1kB blocks (UNIX was 512) Lots of large

disks.

12



Raspberry Pi Booting

• Unusual – GPU handles it

• Small amount of firmware on SoC

• ARM chip brought up inactive (in reset)

• Videocore loads first stage from ROM

13



Raspberry Pi Booting (pre pi4)

• Videocore reads bootcode.bin from FAT partition on

SD card into L2 cache.

It’s actually a RTOS (real time OS) in own right

“ThreadX” (50k)

• This runs on videocard, enables SDRAM, then loads

start.elf (3M)

• This initializes things, the loads and boots Linux onto

ARM chip kernel.img. (also reads some config files

there first) (4M)

14



Pi4 booting

• https://www.raspberrypi.org/documentation/hardware/raspberrypi/booteeprom.md

• SPI EEPROM holds equivelent of bootcode.bin, no

longer read from partition

• Why? SDRAM, PCIe USB, etc are more complex

• Supports network and USB booting which is much more

complex than just loading a file off of SD card

15

https://www.raspberrypi.org/documentation/hardware/raspberrypi/booteeprom.md


Typical ARM booting

• The UBoot bootloader is common

• ARM chip runs first-stage boot loader (often MLO)

• Then loads second-stage (uboot)

16



Why a FAT Partition?

• /boot on Pi is a legacy (40+ years old) File-Allocation

Table (FAT) filesystem

• Why FAT? (Simple, Low-memory, Works on most

machines, In theory no patents despite MS’s best

attempts (see exfat))

• The boot firmware (burned into the CPU) is smart

enough to mount a FAT partition

17



Boot Methods

• Floppy

• Hard-drive (PATA/SATA/SCSI/RAID)

• CD/DVD

• USB

• Network (PXE/tftp)

• Flash, SD card

• Tape

• Networked tape

• Paper tape? Front-panel switches?

18



Disk Partitions

• Way to virtually split up disk.

• DOS GPT – old partition type, in MBR. Start/stop

sectors, type

• Types: Linux, swap, DOS, etc

• GPT had 4 primary and then more secondary

• Lots of different schemes (each OS has own, Linux

supports many). UEFI more flexible, greater than 2TB

• Why partition disks?

◦ Different filesystems; bootloader can only read FAT?

19



◦ Dual/Triple boot (multiple operating systems)

◦ Old: filesystems can’t handle disk size

20



Device Detection

• x86, well-known standardized platform. What windows

needs to boot. Can auto-discover things like PCI bus,

USB. Linux kernel on x86 can boot on most.

• Old ARM, hard-coded. So a rasp-pi kernel only could

boot on Rasp-pi. Lots of pound-defined and hard-coded

hw info.

• New way, device tree. A blob that describes the

hardware. Pass it in with boot loader, and kernel can use

21



it to determine what hardware is available. So instead

of Debian needing to provide 100 kernels, instead just

1 kernel and 100 device tree files that one is chosen at

install time.

• Does mean that updating to a new kernel can be a pain.

22



Detecting Devices

There are many ways to detect devices

• Guessing/Probing – can be bad if you guess wrong and

the hardware reacts poorly to having unexpected data

sent to it

• Standards – always knowing that, say, VGA is at address

0xa0000. PCs get by with defacto standards

• Enumerable hardware – busses like USB and PCI allow

you to query hardware to find out what it is and where

23



it is located

• Hard-coding – have a separate kernel for each possible

board, with the locations of devices hard-coded in. Not

very maintainable in the long run.

• Device Trees – see next slide

24



Devicetree

• Traditional Linux ARM support a bit of a copy-paste and

#ifdef mess

• Each new platform was a compile option. No common

code; kernel for pandaboard not run on beagleboard not

run on gumstix, etc.

• Work underway to be more like x86 (where until recently

due to PC standards a kernel would boot on any x86)

• A “devicetree” passes in enough config info to the kernel

25



to describe all the hardware available. Thus kernel much

more generic

• Still working on issues with this.

26



Booting Linux

• Bootloader jumps into OS entry point

• Set Up Virtual Memory

• Setup Interrupts

• Detect Hardware / Install Device Drivers

• Mount filesystems

• Pass control to userspace / call init (systemd?)

27



• Run init scripts

• rc boot scripts, /etc/rc.local

Start servers, or “daemons” as they’re called under

Linux.

• fork()/exec(), run login, run shell

28



How a Program is Loaded on Linux

• Kernel Boots

• init started

• init calls fork()

• child calls exec()

• Kernel checks if valid ELF. Passes to loader (ld.so)

• Loader loads it. Clears out BSS. Sets up stack. Jumps

to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.

29



Shared vs Staic Libraries

• Shared libraries, only need one copy of code on disk and

in memory

◦ Good for embedded system (less room needed)

◦ Good for security updates (only need to update lib,

not every program using it

• Static libraries, all libraries included

◦ No dependencies

• These days maybe containers, docker, kubertenes

• Can use ldd to view library usage

30



Viewing Processes

• You can use top to see what processes are currently

running

• Though htop can be cooler

• Also ps but that’s a bit harder to use.

31


