ECE 471 — Embedded Systems
Lecture 16

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

5 October 2022

http://web.eece.maine.edu/~vweaver

Announcements

e Midterm on 14th

e Don't forget HW#5

e No need to hand displays back yet

Homework #4 Error Checking

e What do you do if there's an error?

e Ignore it? Why could that be bad?

e Retry until it succeeds?

e Print an error message and continue?
Can you continue?
What if continuing with a bad file descriptor breaks
things?
What if printing too many error messages fills up a log,
swamps the screen, hides other errors?

-y)

e Good error message
Can’t be confused with valid input (airlock)
If displayed to user, make it easy to understand
e Print an error message and exit?
What if it's a critical system?
e Crashing is almost never the right answer.
e Can get more info on error with errno / strerror()

Homework #4 Permissions

e We haven't really discussed Linux permissions

o List file, "user” "group” "all”

® drwXr—-xr-Xx

e Often in octal, 777 means everyone access

e Devices under /dev or /sysfs might be set to only root
or superuser

e Traditional UNIX /dev you can set with chown (to set
user/group) or chmod (to set permissions)

e Group under /etc/group, so gpio group

-y 4

e Why is it better than using “sudo”? Why might | as
grader not want to run your code using “sudo” if | can
avoid it?

e How to set up sudo? /etc/sudoers file

Homework #4 — LED Blinking

e Blink frequency. Remember, 1Hz is 500ms on / 500ms
off
not 500us, not 1s

e Blink correct GPIO. Does it matter? Want to fire
engines, not engage self destruct.

Homework #4 — Switch

e Debouncing

o 100ms or even 10ms is long time

o Tricky as we are detecting levels not edges here

o Reading and only reporting if you say have 3 in a row
of save val

o Reading, sleeping a bit, then report the value after has
settlec

o Just sleeping a long time after any change? If a short
glitch happens this might misreport.

-y 7

o Sleep too long, might miss events

o Debounce if using interrupt-d
In that case debouncing mig

riven code
nt be to ignore repeated

changes if they happen too ¢

ose together

Homework #4 — Something Cool

e How can you read/write at same time (say to let switch
activate LED)

e Need to make copy of data structures

e If you do re-use, make sure you close(), especially if you
open multiple times. Either will get EBUSY or else fd
leak

Homework #4 Question

e 5a Why usleep? Less resources (not busy
sleeping), cross-platform (not speed-of-machine-
dependent), compiler won't remove, other things can
run, power saving.
Be careful saying accuracy! usleep() guarantees a
minimum time delay, but it is best effort how long
the delay actually is. So if you really need *exact™® time
delays you probably want some other interface.

e 5.b Layer of abstraction. In this case, not having

-y 10

to bitbang the interface or know low-level addresses,
portability among machines.
ability to run WiringP1 is not a benefit

e 6.a Machines from dmesg: 2022: Pi4 (3) Pi3B+ (1)

dmesg a good place to find error messages, etc. grep

e 6.b Kernel versions. Current Linus kernel (upstream) is

6.0
Uname syscall, what the parts mean

Linux linpack-test 4.14.50-v7+ #1122 SMP Tue Jun 19 12:26:26 BST 2018 armv71l GNU/Linux\\
Linux orvavista 4.5.0-2-amd64 #1 SMP Debian 4.5.5-1 (2016-05-29) x86_64 GNU/Linux\\

2022: 5.15.61 (1) 5.15.0 (1) (ubuntu?) 5.15.32 (1)
5.4.51 (1)

-y 1

e 0.c. Disk space. Why -h? Human readable. what does
that mean? Why is it not the default? At least Linux
defaults to 1kB blocks (UNIX was 512) Lots of large
disks.

/Y 12

Raspberry Pi Booting

e Unusual — GPU handles it

e Small amount of firmware on SoC

e ARM chip brought up inactive (in reset)
e Videocore loads first stage from ROM

13

Raspberry Pi Booting (pre pi4)

e Videocore reads bootcode.bin from FAT partition on
SD card into L2 cache.

Its actually a RTOS (real time OS) in own right
hreadX"” (50k)

e This runs on videocard, enables SDRAM, then loads
start.elf (3M)
e T his Initializes things, the loads and boots Linux onto

ARM chip kernel.img. (also reads some config files
there first) (4M)

-y 14

Pi4 booting

@ nhttps://www. raspberrypi.org/documentation/hardware/raspberrypi/booteeprom.md

e SPI EEPROM holds equivelent of bootcode.bin, no
longer read from partition

e Why? SDRAM, PCle USB, etc are more complex

e Supports network and USB booting which is much more
complex than just loading a file off of SD card

-y 15

https://www.raspberrypi.org/documentation/hardware/raspberrypi/booteeprom.md

Typical ARM booting

e [he UBoot bootloader is common
e ARM chip runs first-stage boot loader (often MLO)

e Then loads second-stage (uboot)

16

Why a FAT Partition?

e /boot on Pi is a legacy (40+ years old) File-Allocation
Table (FAT) filesystem

e Why FAT? (Simple, Low-memory, Works on most
machines, In theory no patents despite MS's best
attempts (see exfat))

e The boot firmware (burned into the CPU) is smart
enough to mount a FAT partition

-y 17

Boot Methods

e Floppy
e Hard-drive (PATA/SATA/SCSI/RAID)
e CD/DVD

e USB

e Network (PXE/tftp)

e Flash, SD card

e [ape

e Networked tape

e Paper tape? Front-panel switches?

-y 18

Disk Partitions

e Way to virtually split up disk.

e DOS GPT - old partition type, in MBR. Start/stop
sectors, type

e Types: Linux, swap, DOS, etc

e GPT had 4 primary and then more secondary

e Lots of different schemes (each OS has own, Linux
supports many). UEFI more flexible, greater than 2TB

e \Why partition disks?
o Different filesystems; bootloader can only read FAT?

/Y 19

o Dual/Triple boot (multiple operating systems)
o Old: filesystems can’'t handle disk size

20

Device Detection

e x80, well-known standardized platform. What windows
needs to boot. Can auto-discover things like PCI bus,
USB. Linux kernel on x86 can boot on most.

e Old ARM, hard-coded. So a rasp-pi kernel only could
boot on Rasp-pi. Lots of pound-defined and hard-coded
hw info.

e New way, device tree. A blob that describes the
hardware. Pass it in with boot loader, and kernel can use

-y o1

it to determine what hardware is available. So instead
of Debian needing to provide 100 kernels, instead just
1 kernel and 100 device tree files that one is chosen at
install time.

e Does mean that updating to a new kernel can be a pain.

/Y 22

Detecting Devices

There are many ways to detect devices

e Guessing/Probing — can be bad if you guess wrong and

the hardware reacts poorly to having unexpected data
sent to It

e Standards — always knowing that, say, VGA is at address
0xa0000. PCs get by with defacto standards

e Enumerable hardware — busses like USB and PCI allow
you to query hardware to find out what it is and where

23

It 1s located

e Hard-coding — have a separate kernel for each possible
board, with the locations of devices hard-coded in. Not
very maintainable in the long run.

e Device Trees — see next slide

-y 24

Devicetree

e Traditional Linux ARM support a bit of a copy-paste and
+#ifdef mess

e Each new platform was a compile option. No common
code; kernel for pandaboard not run on beagleboard not
run on gumstix, etc.

e Work underway to be more like x86 (where until recently
due to PC standards a kernel would boot on any x86)

e A “devicetree” passes in enough config info to the kernel

25

to describe all the hardware available. Thus kernel much
more generic

e Still working on issues with this.

-y 26

Booting Linux

e Bootloader jumps into OS entry point

e Set Up Virtual Memory

e Setup Interrupts

e Detect Hardware / Install Device Drivers
e Mount filesystems

e Pass control to userspace / call init (systemd?)

27

e Run init scripts

e rc boot scripts, /etc/rc.local
Start servers, or “daemons” as they're called under
Linux.

e fork()/exec(), run login, run shell

-y 28

How a Program is Loaded on Linux

Kernel Boots

init started

init calls fork()

child calls exec ()

Kernel checks if valid ELF. Passes to loader (Id.so)

e Loader loads it. Clears out BSS. Sets up stack. Jumps
to entry address (specified by executable)

e Program runs until complete.

e Parent process returned to if waiting. Otherwise, init.

-y 29

Shared vs Staic Libraries

e Shared libraries, only need one copy of code on disk and
In memory
o Good for embedded system (less room needed)
o Good for security updates (only need to update lib,
not every program using It
e Static libraries, all libraries included
o No dependencies
e [hese days maybe containers, docker, kubertenes
e Can use 1dd to view library usage

/Y 30

Viewing Processes

e You can use top to see what processes are currently
running

e [hough htop can be cooler

e Also ps but that's a bit harder to use.

-y 31

