ECE 471 — Embedded Systems
Lecture 18

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

12 October 2022

http://web.eece.maine.edu/~vweaver

Announcements

e Midterm on Friday, the 14th

e Am trying to grade all homeworks by then

Project Preview

e Can work in groups

e Embedded system (any type, not just Pi)
Pi Pico, Beagleboard, Orange Pi, 271 STM boards,
TS-7600, etc.

e Written in any language (asm, C, python, C++, Java,
Rust, etc.)

e Do some manner of input and some manner of output
using the various capabilities we discussed

e | have a large amount of i2c, spi, and other devices that

-y)

you can borrow if you want to try anything interesting.
e Past projects: games, robots, weather stations, motor
controllers, music visualization, etc.
e Will be a final writeup, and then a short minute
presentation and demo in front of the class during last
week of classes.

HW#5 — Code Notes — Datasheet

e What does 'X' mean in this context? (don't care)

e Bits 15-8 was confusing, it's because we can ignore bits
7-0 (the i2c address and r/w) as Linux sends those for
us

HW#5 — Code Notes — Constants

e Enabling oscillator. If want value 2 in top 4 bits, 1 in
bottom 47 Just use 0x217

(0x2<<4) | (0x1)

e Can we use hex or binary notation?
The shifts make it more explicit what's going on,

compller will optlmlze for you
“Magic Constants”, you might instead want to do
somethlng like

#define HT16K33_0SCILLATOR_ON (0x2<<4)|(0x1) // p42 of datasheet
buffer [0]=HT16K33_0SCILLATOR_ON;

-y 5

HW#5 Review — Questions — Pi Boot

e Raspberry Pi boot is odd: GPU does it.
Why? Originally the chip was designed to be mostly

GPU.
e sd-card is mildly unusual but not as unusual as GPU

HW#5 Review — Questions — Bootloader

e Program that loads kernel and jumps to it is called the
bootloader

e Not start.elf or GRUB (those are specific bootloaders)

e Not an init script (those run after the kernel is running)

e Not the boot firmware (this often loads the bootloader.
In some cases firmware can act as a bootloader, but In
that case it is a bootloader)

HW+#5 Review — Questions — Fat32

e A full description of filesystems is a bit beyond this class

e Fat32 is a specific, simple, filesystem with roots going
back to the 1970s via MS-DOS and ran on computers
with less than 16kB of RAM

e [he primary reason it is used by boot firmware is because
the code is simple and can be easily coded in a small
amount of C/asm code and can be used for early boot

e Not necessarily written in Assembly

e It's not default Linux filesystem (default Linux fs is

-y g

something more complex like ext4 or btrfs)

HW#5 Review — Questions — i2c Reserved
Address

e Skipped i2c — those addresses are reserved.
e For various things, not just “future purposes”

e What happens if you have a device living at address 0x07?
Would it work?

/Y 10

HW#5 Review — Linux

e wc, diff, piping

e You may have seen this all before in ECE331

e diff — used when making patches, also git diff
Ask for wc -l which just shows lines. Can also show
words, chars

/Y 11

1I2c Reserved Addresses Reminder

Address R/W Bit | Description

000 0000 | O General call address

000 0000 | 1 START byte (helps make polling cheaper)
000 0001 | X CBUS address

000 0010 | X Reserved for different bus format

000 0011 | X Reserved for future purposes

000 01XX | X Hs-mode master code

111 10XX | X 10-bit slave addressing

111 11XX | X Reserved for future purposes

10-bit addresses work by using special address above with
first 2 bits + R/W, then sending an additional byte with
the lower 8 bits.

-y 12

Midterm Notes

e The midterm will be in-person during class time

e Closed book/notes but you are allowed one page
(8.5"x11") full of notes if you want

-y 13

Midterm Content

e Be sure you know the characteristics of an embedded
system, and can make an argument about whether a
system Is one or not.

o Inside of something (embedded)

o Fixed-purpose

o Resource constrained

o Sensor /0

o Real time constraints (if you use this, be sure you can
explain)

-y 14

e Benefits/downsides of using an operating system on an
embedded device
o Benefits: “Layer of Abstraction”
o Downsides: overhead, timing
e C code
o Have you look at some code and know what it is doing
=il in missing comments
ook at code and find bugs
Mostly know what file 1/0, loops, usleep, open/ioctl
(things we've done in the homeworks)
e Code Density

o O O

-y 15

o Why is dense code good in embedded systems?

o Know why ARM introduced THUMB/THUMB?2

GPIO & i2c

o Know some of its limitations (speeds, length of wires,
number of wires, etc)

o Don't need to know the raw protocol

o Know the Linux interface (open, ioctl, write) and be
familiar with how those system calls work

-y 16

