
ECE 471 – Embedded Systems
Lecture 20

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

21 October 2022

http://web.eece.maine.edu/~vweaver


Announcements

• HW#6 will be posted

• Midterm grades out soon

• Note from HW#4, ask about how to have multiple GPIO

open

need to duplicate structs. Two opens, two separate fds,

to separate req structs, can see example of this in HW#6

code

1



HW#6 Notes

• Homework#6 has you play with realtime priorities

• No coding involved, instead some experiments

• Need to hook up GPIO24 to GPIO25 with a 1k resistor

(see me if you need one)

• Threaded code, one thread sets GPIO24 high, and then

the code times how long it takes another thread watching

GPIO25 to notice

• Run this many times, see the min/max latency you can

expect

2



• Then we will try out setting priorities to see how it

effects things

3



Software Sources of Jitter

• Interrupts. Taking too long to run; being disabled (cli)

• Operating system. Scheduler. Context-switching.

• Dynamic memory allocation, garbage collection.

4



Latency in Modern Systems

• Modern software stack has sources of latency

5



Video game keyboard latency example

See Dan Luu’s Paper “Computer Latency: 1977-2017”

https://danluu.com/input-lag/

• 1977 computers can have less latency to getting keypress

on screen than fastest 2010s computers

• Having a fast processor only helps so much

• Slow hardware (keyboards, LCD displays), layers of

abstraction in the way

• Apple II (1977) 30ms, modern machines 60-100+ms

6

https://danluu.com/input-lag/


Latency of Apple II

• CPU running code reading memory access

Each CPU instruction handful of cycles at 1MHz (few

usec)

• Press happens, high bit set along with ASCII code, CPU

reads in

• CPU writes out ASCII value to memory

• Video gen code running in parallel at 60 frames per

second

• Electron beam scanning, reads out RAM, runs through

7



decode ROM to get 7-bit pattern, writes to screen within

one frame worst case

8



Latency of Modern System

• Press key, keyboard is own embedded system with CPU,

scans keyboard, gets value, encodes it up as USB packet

• Sends out over USB bus (complex and with latency)

• USB controller gets packet, sends interrupt to CPU

• CPU gets interrupt, takes packet, notes it, returned from

interrupt

• Later bottom half runs, decodes, to input subsystem,

• Operating system sees if anything is waiting for the

input, if so it wakes it up (may take a bit if anything

9



else running)

• If it’s a GUI, might have to run and see which window

has focus, etc

• Program itself finally gets notified of keypress. scanf().

Immediately printf()

• Terminal emulator, upate the graphics for the window

(colors, font processing)

• GUI compositor puts together screen, tells OS

• OS sends out over PCIe bus to GPU

• GPU runs shaders/whatever outputs to display via HDMI

• LCD display gets the data, decodes it to display it

10



• Display might buffer a few frames to do extra processing

(turn this off with “gaming” mode)

11



Can you get Real-Time on Modern
Systems?

• Small embedded systems w/o operating system easier

• Code directly to hardware

• Turn off interrupts

• Turn off/avoid caches/speculation

• Load all of code into memory

12



What about on higher end systems?

• Modern hardware does make it difficult with potentially

unpredictable delay

• Hard to program such machines w/o an operating system

• Some machines provide special, deterministic co-

processors to help (PRUs on the beaglebone)

• You can still attempt to get real-time by coding your OS

carefully

13



Real Time Operating Systems

How do RTOSes differ from regular OSes?

• Low-latency of OS calls and interrupts (reduced jitter)

• Fast/Advanced Context switching (especially the

scheduler used to pick which jobs to run)

• Often some sort of job priority mechanism that allows

high-importance tasks to run first

14



Software Worst Case – IRQ overhead

• OS like Linux will split interrupt handlers into

top/bottom halfs

• Top half will do the bare minimum: ACK the interrupt,

make a note for the OS to handle the rest later, then

immediately return. Tries to keep IRQ latency as small

as possible.

• Bottom half at some later time when nothing else is

going on the OS will carry out the work needed by the

15



IRQ (handle a keypress, or a network packet, etc)

16



Software Worst Case – Context Switching

• OS provides the illusion of single-user system despite

many processes running, by switching between them

quickly.

• Switch rate in general 100Hz to 1000Hz, but can vary

(and is configurable under Linux). Faster has high

overhead but better responsiveness (guis, etc). Slower

not good for interactive workloads but better for long-

running batch jobs.

17



• You need to save register state. Can be slow, especially

with lots of registers.

• When does context switch happen? Periodic timer

interrupt. Certain syscalls (yield, sleep) when a process

gives up its timeslice. When waiting on I/O

• Who decided who gets to run next? The scheduler.

• The scheduler is complex.

• Fair scheduling? If two users each have a process, who

runs when? If one has 99 and one has 1, which runs

18



next?

• Linux scheduler was O(N). Then O(1). Now O(log N).

Why not O(N 3)

19



Common OS scheduling strategies

• Event driven – have priorities, highest priority pre-empts

lower

• Time sharing – only switch at regular clock time, round-

robin

20



Scheduler example

• Simple: In order the jobs arrive

• Static: (RMS) Rate Monotonic Scheduling – shortest

first

• Dynamic: (EDF) Earliest deadline first

• Three tasks come in

◦ A: deadline: finish by 10s, takes 4s to run

◦ B: deadline: finish by 3s, takes 2s to run

◦ C: deadline: finish by 5s, takes 1s to run

• Can they meet the deadline?

21



• There is a large body of work on scheduling algorithms.

In-order A A A A B B C - - -

RMS C B B A A A A - - -

EDF B B C A A A A - - -

22


