
ECE 471 – Embedded Systems
Lecture 21

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

24 October 2022

http://web.eece.maine.edu/~vweaver


Announcements

• Don’t forget RT homework HW#6

• Don’t forget projects

• HW#6 comment: newish assignment, the 3rd/4th

experiment might slow down your system to be unusable

if logged in at the GUI. If this happens and you can’t

complete the question, just mention that and complete

things the best you can.

• Turn back midterm exam

1



• Briefly go over midterm exam

2



Scheduler Complications – Threading

• A thread is a unit of executing code with its own program

counter and own stack

• It’s possible to have one program/process have multiple

threads of execution, sharing the same memory space

• Why? Parallelize across more cores, have separate

background task (sound in video games), etc.

3



Scheduler Complications – Locking

• When shared hardware/software and more than one thing

might access at once

• Example:

◦ thread 1 read temperature, write to temperature

variable

◦ thread 2 read temperature variable to write to display

◦ each digit separate byte

◦ Temperature was 79.9, but new is 80.0

◦ Thread 1 writing this

4



◦ What if Thread 2 reads part-way through? Could you

get 89.9?

5



Scheduler Complications – Locking

• Previous was example of Race Condition (two threads

“racing” to access same memory)

• How do you protect this? With a lock. Special data

structure, allows only one access to piece of memory,

others have to wait.

• Can this happen on single core? Yes, what about

interrupts.

• Implemented with special instructions, in assembly

language

6



• Usually you will use a library, like pthreads

• mutex/spinlock

• Atomicity

7



Priority Inversion Example

• Task priority 3 takes lock on some piece of hardware

(camera for picture)

• Task 2 fires up and pre-empts task 3

• Task 1 fires up and pre-empts task 1, but it needs same

HW as task 3. Waits for it. It will never get free.

(camera for navigation?)

• Space probes have had issues due to this.

8



Real Time without an O/S

Often an event loop. All parts have to be written so

deadlines can be met. This means all tasks must carefully

be written to not take too long, this can be extra work if

one of the tasks is low-priority/not important
main() {

while (1) {

do_task1 (); // read sensor

do_task2 (); // react to sensor

do_task3 (); // update GUI (low priority)

}

}

9



Bare Metal

• What if want priorities?

• Have GUI always run, have the other things happen in

timer interrupt handler?

• What if you have multiple hardware all trying to use

interrupts (network, serial port, etc)

• At some point it’s easier to let an OS handle the hard

stuff

10



Real Time Operating System

• Can provide multi-tasking/context-switching

• Can provide priority-based scheduling

• Can provide low-overhead interrupts

• Can provide locking primitives

11



Hard Real Time Operating System

• Can it be hard real time?

• Is it just some switch you can throw? (No)

• Simple ones can be mathematically provable

• Otherwise, it’s a best effort

12



Priority Based, like Vxworks

• Each task has priority 0 (high) to 255 (low)

• When task launched, highest priority gets to run

• Other tasks only get to run when higher is finished or

yields

• What if multiple of same priority? Then go round-robin

or similar

13



Free RTOS

• Footprint as low as 9K

• Pre-emptive or co-op multitasking

• Task priority

• Semaphores/Mutexes

• Timers

• Stack overflow protection

• Inter-process communication (queues, etc)

• Power management support

• Interrupts (interrupt priority)

14



Memory Allocation – Static vs Dynamic

• Using malloc() and new()

• Not always available

• Code can be large

• Is it thread safe?

• Is it deterministic?

• Can lead to fragmentation

• What to do if fails?

• Free RTOS (newer) allows static allocation at compile

time

15


