
ECE 471 – Embedded Systems
Lecture 22

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

26 October 2022

http://web.eece.maine.edu/~vweaver


Announcements

• Don’t forget HW#6

• Keep thinking about projects, topic due next Friday.

• HW#5 was finally graded

Watch those compiler warnings, also be sure to comment

code

1



Memory Allocation in Embedded Systems

2



Memory Allocation – Dynamic

• Using malloc()/calloc() or new()

• In C have to make sure you free() at end

• Downsides:

◦ What to do if fails?

Can you handle that? What if error code also tries to

alloc?

◦ Timing overhead? Is it deterministic?

Especially problem with high-level languages and

garbage collection

3



◦ Fragmentation: when there’s plenty of RAM free but

it’s in small chunks when you need a large chunk

4



Memory Allocation – Static

• Allocate all memory you need at startup

• Fail early

• This isn’t always possible, but avoids issues with failure,

overhead, etc.

5



Is Regular Linux a RTOS

• Not really

• Can do priorities (“nice”) but the default ones are not

RT.

• Aside, “nice” comes from old UNIX multi-user days,

when you could be nice and give your long-running jobs

a low-priority so they wouldn’t interfere with other people

doing interactive tasks

6



PREEMPT Kernel

• Linux PREEMPT RT

• Faster response times

• Remove all unbounded latencies

• Change locks and interrupt threads to be pre-emptible

• Have been gradually merging changes upstream

7



Typical kernel, when can you pre-empt

• When user code running

• When a system call or interrupt happens

• When kernel code blocks on mutex (lock) or voluntarily

yields

• If a high priority task wants to run, and the kernel is

running, it might be hundreds of milliseconds before you

get to run

8



• Pre-empt patch makes it so almost any part of kernel can

be stopped (pre-empted). Also moves interrupt routines

into pre-emptible kernel threads.

9



Linux PREEMPT Kernel

• What latencies can you get?

10-30us on some x86 machines

• Depends on firmware; SMI interrupts (secret system

mode, can’t be blocked, emulate USB, etc.)

Slow hardware; CPU frequency scaling; nohz

• Special patches, recompile kernel

• Priorities

◦ Linux Nice: -20 to 19 (lowest), use nice command

◦ Real Time: 0 to 99 (highest)

10



◦ Appears in ps as 0 to 139?

11



Linux code that’s RT Friendly

• What do you do about unknown memory latency?

◦ mlockall() memory in, start threads and touch at

beginning, avoid all causes of pagefaults (so no

millisecond delays if memory swapped to disk)

• What do you do about priority?

◦ Use POSIX interfaces, no real changes needed in code,

just set higher priority

◦ See the chrt tool to set priorities.

• What do you do about interrupts?

12



◦ See next

13



Interrupts

• Why are interrupts slow?

• Shared lines, have to run all handlers

• When can they not be pre-empted? IRQ disabled? If

a driver really wanted to pause 1ms for hardware to be

ready, would often turn off IRQ and spin rather than

sleep

• Higher priority IRQs? FIR on ARM?

• Top Halves / Bottom Halves

• Unrelated, but hi-res timers

14



Co-operative real-time Linux

• Xenomai

• Linux run as side process, sort of like hypervisor

15



Next up is SPI

Start early on it as there’s more than one lecture of material

16


