
ECE 471 – Embedded Systems
Lecture 25

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

2 November 2022

http://web.eece.maine.edu/~vweaver


Announcements

• Project topics are due, will respond to them

1



Coding Mistakes with Security Implications

2



Dangling Pointer / Null Pointer
Dereference

• Typically a NULL pointer access generates a segfault

• If an un-initialized function pointer points there, and

gets called, it will crash. But until recently Linux allowed

users to mmap() code there, allowing exploits.

• Other dangling pointers (pointers to invalid addresses)

can also cause problems. Both writes and executions can

cause problems if the address pointed to can be mapped.

3



Privilege Escalation

• If you can get kernel or super-user (root) code to jump

to your code, then you can raise privileges and have a

“root exploit”

• If a kernel has a buffer-overrun or other type of error and

branches to code you control, all bets are off. You can

have what is called “shell code” generate a root shell.

• Some binaries are setuid. They run with root privilege

but drop them. If you can make them run your code

before dropping privilege you can also have a root exploit.

4



◦ ping (requires root to open raw socket)

◦ X11 (needs root to access graphics cards)

◦ web-server (needs root to open port 80).

5



Information Leakage

• Can leak info through side-channels

• Detect encryption key by how long other processes take?

Power supply fluctuations? RF noise?

• Timing attacks

• If code takes different paths through code can notice

this via linked info

Solution: cycle-invariant code, takes same amount of

time for all paths through code (really hard to write

code like this)

6



Information Leakage: Meltdown and
Spectre

• Can use timing to find if address is in cache

• If speculative execution, can do things like

if (secret&1) a[0]=1;

else a[4096]=1;

then use timing to see which one was brought in

7



Deceptive Code

• Can you sneak purposefully buggy/exploitable code into

open source?

• Can you sneak bad code (or use typo-squatting) to trick

people in large public repositories (like javascript/npm)

• To-do at U of Minnesota where researches tried

(unsuccessfully it turns out) to sneak questionable code

into the kernel

• “Trojan Source” in the news: can use unicode (including

8



left-right reversal) to have code that looks correct but

compiler will compile differently

• Should code allow non-ASCII?

to apply updates

9



Finding Bugs

• Source code inspection

• Watching mailing lists

• Static checkers (coverity, sparse)

• Dynamic checkers (Valgrind). Can be slow.

• Fuzzing

10



perf fuzzer

• Fuzzers intentionally try invalid/dangerous input by

generating random inputs causing crash

• I wrote the perf fuzzer which found many bugs in

Linux kernel with the perf event open() syscall

11



Reporting Bugs

• So you found a security bug...

• Who do you contact?

• What’s responsible disclosure?

• Bug bounties

• Can be a hassle reporting properly, and companies are

always suspicious and can even accuse you of evil hacking

12



Computer Security

13



Social Engineering

• Often easier than actual hacking

• Talking your way into a system

• Looking like you know what you are doing

• “The Art of Deception”

14



Worrisome embedded systems

• Backdoors in routers.

• Voting Machines, ATMs

• pacemakers – what stops someone from updating

firmware?

• Rooting phones

• Rooting video games

15



• Others?

16



Voting Machines

• Maine has paper ballot — not too bad

• Often are old and not tested well (Windows XP, only

used once a year)

• How do researchers get them to test? e-bay?

• USB ports and such exposed, private physical access

• Can you trust the software? What if notices it is Election

Day and only then flips 1/10th the vote from Party A to

Party B. Would anyone notice? What if you have source

code?

17



• What if the OS does it. What if Windows had code that

on Election Day looked for a radio button for Party A

and silently changed it to Party B when pressed?

• OK you have and audit the source code. What about

the compiler? (Reflections on Trusting Trust). What

about the compiler that compiled the compiler?

• And of course the hardware, but that’s slightly harder to

implement but a lot harder to audit.

18


