
ECE 471 – Embedded Systems
Lecture 30

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

16 November 2022

http://web.eece.maine.edu/~vweaver


Announcements

• Midterm Friday. Can have one piece of 8.5”x11” paper

for notes (single side)

• Project status report due 22nd (Tuesday before

Thanksgiving)

Important parts are re-stating the topic, how you’re

doing, are you OK on parts, and finally which day you’d

like to go (early Friday, or M/W/F)

• NASA SLS rocket finally launched late last night.

Computer delay, ethernet switch needed replaced?

1



HW#7 Review – Code

• People managed merging 2 bytes into one OK

• A lot of trouble converting binary to hexadecimal.

Trouble with embedded systems is off-by one values like

this can be really hard to debug

Note on gcc at least you can enter binary constants like

0b10100101

• Divide by 1023 vs 1024

• What is the max frequency? Last year someone setting

to 500kHz by accident, a few degrees different. Data

2



sheet unclear

• Be sure to check for error on open(), biggest source

of errors. Linux won’t crash, it will happily just report

errors that your code is likely ignoring.

• Errors: exiting. Not print plausibly real invalid values.

In our case, printing 0V when actually 3.3V not an issue,

but imagine if it were 10,000V and you print 0V

3



HW#7 Review – Questions

• Disadvantage of SPI?

More wires, no standard, no errors

• Advantage of SPI?

Lower Power, Full Duplex, No max speed

• TMP36 on end of cable.

Voltage Drop, Noise?

Datasheet has two options, convert to current, or an

extra resistor.

• Minimum frequency of 10kHz or results invalid. Maybe

4



cannot go this fast if bitbanging via GPIO. Also context

switch in middle, Linux not realtime?

5



HW#7 Review – Linux “fun”

• /dev/null

• /dev/full

• /dev/zero, holes in files

• /dev/random – give explanation on sources of

randomness (entropy), pseudo-randomness, etc.

• Mention related DOS/Windows compatibility issue with

device filenames

6



Homework 8 – Code

• Error checking. Exit if cannot open. If you don’t, can

segfault if try to fscanf a NULL FILE*

• Returning -1 on error might be bad idea

• What to report on error? What’s an invalid temperature?

Not just unlikely? (Below Absolute zero)

• If using streams (FILE *fff), on fopen() error it returns

NULL, not -1.

• Be sure to close files, otherwise leak file descriptors Be

careful if multiple exit points, must close at all (goto)

7



• Be careful with your 9/5 Fahrenheit conversion!

• Finding a file using C. opendir() readdir(), horrible

interface

Bit of a tangent on the downsides of the readdir()

interface

8



HW#8 – Questions

• Why need Vdd? To provide enough current for this

particular chip needs extra current if you want parasite

mode.

You can try without Vdd but you will always read out

85C.

Manual suggests MOSFET, but apparently it’s possible

on Pi if use 4.7k resistor as well as “strong-pullup=y”

kernel command line option.

• Because of distance, 1-wire

9



• shell script

◦ #!/bin/sh should be first line (magic number)

◦ Trouble if edit on windows, why (linefeed vs carriage

return)

shebang description

◦ Making executable with chmod

◦ Default shell, can put other things there, like python

or perl, etc, even ARM emulator

◦ sh vs bash

10



Ethics in Software Engineering

• There’s ethics when programming

• What if company wants you to code Dark Patterns?

• Privacy? Data Logging? Tracking?

• Unintentional security leaks: fitness trackers giving away

military locations

• Thermostats: forget to change password if move or

divorce, others now control your heating

• Amazon/Google devices, always listening in your house

• Web-cameras everywhere

11



How Can You Avoid Bad/Buggy Code?

12



Code Safety Standards

• Avionics: DO-178C (1992 for B)

• Industrial: IEC 61508 (1998)

• Railway: CENELEC EN 50128 (2001)

• Nuclear: IEC 61513 (2001)

• Medical: IEC 62304 (2006)

• Automotive: ISO 26262 (2011)

13



Code Safety Standards

• Is it easy to get a hold of copies of these?

14



Aviation

• DO-178B / DO-178C

• Software Considerations in Airborne Systems and

Equipment Certification

– Catastrophic: fatalities, loss of plane

– Hazardous: negative safety, serious/fatal injuries

– Major: reduce safety, inconvenience or minor injuries

– Minor: slightly reduce safety, mild inconvenience

– No Effect: no safety or workload impact

15



Automotive ISO 26262

• What is a document like this like?

• Vocab and definitions

• Management

• Safety Life Cycle

• Supporting processes

• Safety Analysis

• Risk Strategy

• Severity

◦ S0 – No injuries

16



◦ S1 – No injuries

◦ S2 – Severe injuries

◦ S3 – Not survive-able

• Exposure

◦ E0 – Unlikely to Happen

◦ ...

◦ E4 – High probability

• Controllability

◦ C0 – Controllable

◦ ...

◦ C3 – Uncontrollable

17



• Look up those in a matrix so you know how to assess

risk, know how important to fix, know what resources to

apply

18



Medical Response

• IEC 62304 – medical device software – software lifecycle

◦ Quality management system – establish the

requirements needed for such a device, then design

methods to be sure it meets these

◦ Avoid reusing software of unknown pedigree (don’t

just cut and paste from stackoverflow)

◦ Risk management – determining what all the risks

involved are, then determine ways to avoid or minimize

them

19



◦ Software safety classification

Class A: no injury possible

Class B: Nonserious injury possible

Class C: serious injury or death possible

Software sorted into these areas. Class A do not require

the same precautions as the others.

20



Other notes

• Top down vs Bottom up Design

Spec out whole thing and how they work first

Start with core part and just keep adding to it until it

works

• Requirements/Specifications?

21



Writing Good (Embedded) C Code

• Various books

• Comment your code!

• Strict, common code formatting (indentation)

• More exact variable types (int32 t not int) Size can vary

on machine, and on operating system

• Subset to avoid undefined behavior

22



• Tool that enforces the coding standards

• Good to write safe code even if it isn’t meant for a safe

application. Why? Good practice. Also who knows who

or when your code might be copied into another project.

23



MISRA

• MISRA: Guidelines for the Use of the C Language
in Critical Systems

• Motor Industry Software Reliability Association

• Guidelines: Mandatory, Required, Advisory

• Some sample guidelines

◦ Avoid compiler differences int (16 or 32 bit?) int32 t

◦ Avoid using functions that can fail (malloc()) allocate

memory at beginning of program not throughout

◦ Maintainable code, comments, coding style (see

24



below)

• Compliance

◦ All mandatory rules must be met

◦ All required rules must have formal deviation

• Deviation

◦ Must make a format explanation for why deviation is

necessary

◦ Prove you’ve thought about the issue

• MISRA 2012 has 143 rules, 16 directives

• NOTE: YOU CAN STILL WRITE BAD CODE EVEN

WHEN FOLLOWING THIS

25



It just makes it easier to write good maintainable code.

26



C Style

• What can C look like?

IOCCC (International Obfuscated C Code Competition)

• Variable style, CamelCase, under score, Hungarian

Notation (arru8NumberList)

• Indentation (tabs vs spaces)

• Curly braces on same or next line

• Comment style

• Auto-generated documentation from comments

27



Good Test Practices

• Unit testing

• Test Driven Development – tests written before the code

happens, needs to pass the tests before done

• Fuzzing

• Device Hardening?

28



Good Documentation Practices

• Comment your code

• Write documentation! Make sure it matches code!

There are some tools that can auto-generate

documentation from special code comments

• Use source control (git, subversion, mercurial)

• Use good commit messages in your source control

29



Space Shuttle Design

• https://www.nasa.gov/mission_pages/shuttle/flyout/

flyfeature_shuttlecomputers.html

• Issues normal embedded systems don’t have: Vibration

at liftoff, Radiation in Space

• If computer stopped for more than 120ms, shuttle could

crash

• “Modern” update in 1991: 1MB Ram, 1.4MIPS. Earlier

was 416k and 1/3 as fast and twice as big

• Change to code, 9 months testing in simulator, 6 months

30

https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlecomputers.html
https://www.nasa.gov/mission_pages/shuttle/flyout/flyfeature_shuttlecomputers.html


more extensive testing

• 24 years w/o in-orbit SW problem needing patches

• 12 year stretch only 3 SW bugs found

• 400k lines of code

• HAL/S high-order assembly language (high-level

language similar to PL/I)

• PASS software – runs tasks. Too big to fit in memory

at once

• BFS – backup flight software. Bare minimum to takeoff,

stay in orbit, safely land, fits in memory, monitors pASS

during takeoff/landing Written by completely different

31



team.

• 28 months to develop new version

• IBM

• Extensive verification. One internal pass, one external

• 4 computers running PASS, one running BFS

• Single failure mission can continue; still land with two

failures

• 4 computers in lock-step, vote, defective one kicked out

32



SpaceX Falcon 9

• Linux – on dual core x86 systems

• Three each, vote

• Flight software in C/C++

• Dragon displays in Chromium+JS

33


