
ECE 471 – Embedded Systems
Lecture 31

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

21 November 2022

http://web.eece.maine.edu/~vweaver

Announcements

• Don’t forget project status reports due Tuesday (22nd)

◦ A one-line statement of your project topic

◦ A short summary of the progress you’ve made so far

◦ List any parts you need that you don’t have yet

◦ List if you’re willing to present early (Friday the 2rd,

Monday 5th or Wednesday 7th vs Friday the 9th)

(there will be some bonus for presenting early)

• Don’t forget HW#9

1

HW#9 Notes – Building Separate Files

• In previous homeworks we put everyting in one C file

• This isn’t really practical for large projects

• By splitting things up into smaller files you can have

some benefits

◦ Easier to organize/find code

◦ Can re-use code easier

◦ Less chance of merge conflicts when multiple people

working on project

◦ Can take common code and make libraries

2

• For example in the homework, we could put

temperature read code into its own file with a double

get temperature(void) interface

• For other C files to see this, you need to export the

definition. Usually this is done by putting the advance

definition double get temperature(void); in a .h

header file and then including it in the other files

• Note: don’t put full C functions in header files. I know

this is a C++ thing but it’s usually frowned upon when

programming in C

• Each file does not need a main() function, you only

3

need one per combined program.

• To link the various .o files together involves the “linker”.

However it’s easier to just let gcc do it (gcc knows

how to run the linker for you) gcc -o display temp

display.o temperature.o

• The linker merges the .o files into one big executable,

and makes sure the placeholders to functions/variables

in all of the files get the right addresses/pointers to

where things live in the finished executable.

• How do you make sure when you change one C file that

everything that uses it is also rebuilt? A well-crafted

4

Makefile will have all these dependencies in place and

will rebuild everything properly.

• Static vs Dynamic linking redux (we did discuss that

earlier in the semester)

5

Other I/O You’ll find on Embedded Boards

6

Digital Audio

• How can you generate audio (which is analog waves)

with a digital computer?

• One way is PCM, Pulse Code Modulation, i.e. use a

DAC.

◦ Sample the sound at a frequency (say 44.1kHz), and

take amplitude (16-bit audio, 64k possible values)

◦ Why 44.1kHz? Nyquist theorem. Twice sample rate

to reproduce properly. 22kHz roughly high end of

human hearing.

7

◦ A WAV file is basically this, has the samples (8 or

16-bit, stereo or mono) sampled at a regular frequency

(often 44.1kHz) to play back, write the values to a

DAC at the sample rate.

8

What if no DAC? (Pi has none)

• Can do PWM, Pulse-Width Modulation

• By varying the width of pulses can have the average value

equal to an intermediate analog value. For example with

duty cycle of 50% average value is 1/2 of Vdd

• Can be “converted” to analog either by a circuit, or just

by the inertia of the coil in a speaker.

9

Saving space

• Can be tens of megabytes per song.

• Music can be compressed

• Lossy: MP3, ogg vorbis

• lossless AAC, FLAC

10

PWM GPIO on Pi

• You can’t get good timings w/o real-time OS

• Available on GPIO18 (pin 12)

• Can get 1us timing with PWM in Hardware

Software: 100us Wiring Pi, less with GPIO interface.

• Which would you want for hard vs soft realtime?

• Other things can do? Beaglebone black as full

programmable real-time unit (PRU)

200MHz 32-bit processor, own instruction set, can

control pins and memory, etc.

11

Linux Audio

• In the old days audio used to be just open /dev/dsp or

/dev/audio, then ioctl(), read(), write()

• These days there’s ALSA (Advanced Linux Sound

Architecture)

The interface assumes you’re using the ALSA library,

which is a bit more complicated.

◦ Handles things like software mixing (if you want to

play two sounds at once)

◦ Other issues, like playing sound in background

12

• On top of that is often another abstraction layer, pulse-

audio

• A mixer interface to pick volumes, muting

• For quick hack can use system() to run a command-line

audio player like aplay

• Better idea might be to use a library such as SDL-mixer

which handles all of this in a portable way with a nice

library interface.

13

Pi Limitations

• Pi interface is just a filter on two of the PWM GPIO

outputs

• Also can get audio out over HDMI.

• If you want better, can get i2s hat

• Pi lacks a microphone input, so if want audio in on your

pi probably need a USB adapter.

14

i2s

• PWM audio not that great

• i2s lets you send packets of PWM data directly to a

DAC

• At least 3 lines. bit clock, word clock

(high=right/low=left stereo), data

• Pi support i2s on header 5

15

SD/MMC

• MultiMediaCard (MMC) 1997

• Secure Digital (SD) is an extension (1999)

• SDSC (standard capacity), SDHC (high capacity), SDXC

(extended capacity), SDIO (I/O)

• Standard/Mini/Micro sizes

• SDHC up to 32GB, SDCX up to 2TB

• Support different amounts of sustained I/O. Class rating

2, 4, 6, 10 (MB/s)

• Patents. Need license for making.

16

SD/MMC Hardware Interface

• 9 pins (8 pins on micro)

• Starts in 3.3V, can switch to 1.8V

• Write protect notch. Ignored on pi?

17

SD/MMC Software Interface

• SPI bus mode

• One bit mode – separate command and data channels

• Four-bit mode

• Initially communicate over 1-bit interface to report sizes,

config, etc.

• DRM built in, on some boards up to 10% of space to

handle digital rights

18

SDIO

• SDIO – can have I/O like GPS, wireless, camera

• Can actually fit full Linux ARM server on a wireless

SDIO card

19

eMMC

• eMMC = like SD card, but soldered onto board

20

More Embedded Board Busses/Interfaces

21

Starting Programs at Boot

• init process starts first

• Traditionally would start various shell scripts under /etc

(the name and order of these can vary a lot)

• Possibly with advent of systemd this will change

• Currently you can still put things you want to run at

start in /etc/rc.local

22

Wii Nunchuck

• Fairly easy to interface

• Put onto i2c bus. Device 0x52

• Send handshake to initialize. Use longer one

(0xf0/0x55/0xfb/0x00) not the simpler one you might

find(0x40/0x00). This works on generic nunchucks and

possibly also disables encryption of results.

• To get values, send 0x00, usleep a certain amount, and

read 6 bytes. This includes joy-x, joy-x, accelerometer

23

x/y/z and c and z button data. More info can be found

online.

byte0 = joy-x, byte1 = joy-y, byte2 = top8 acc x, byte3

= top8 acc y, byte4 = top8 acc z, byte 5 is bottom 2

z,y,x then button c and z (inverted?)

24

Linux and Keyboard

• Old ps/2 keyboard just a matrix of keys, controlled by a

small embedded processor.

Communication via a serial bus. Returns “keycodes”

when keypress and release and a few others.

• Many modern keyboards are USB, which requires full

USB stack. To get around needing this overhead (for

BIOS etc) support bit-bang mode. OS usually has

abstraction layer that supports USB keyboards same as

old-style

25

• Linux assumes “CANONICAL” input mode, i.e. like a

teletype. One line at a time, blocking input, wait until

enter pressed.

• You can set non-CANONICAL mode, async input, and

VMIN of 1 to get reasonable input for a game. Arrow

keys are reported as escape sequences (ESCAPE-[-A for

up, for example).

• Even lower-level you can access “RAW” mode which

gives raw keycode events, etc.

• See the tcgetattr() and tcsetattr() system calls

• There are libraries like ncurses that abstract this a bit.

26

Also GUI and game libraries (SDL).

27

Faking Linux Input Events

• How to insert input events into Linux, i.e. have a

software program fake keyboard/mouse/joystick events.

• Linux supports a ”uinput” kernel driver that lets you

create user input.

• There is some info on a library that makes this easier

here: http://tjjr.fi/sw/libsuinput/

• It has examples for keyboard and mouse. Joystick should

be possible but there’s no sample code provided.

• Python wrappers seem to exist too.

28

http://tjjr.fi/sw/libsuinput/

Camera Port

• The SoC has dedicated hardware for driving cameras

• 5megapixel, CSI port (Camera Serial Interface) plus i2c

bus to command it.

• Can read data in parallel, directly, without needing USB

overhead.

• These chips often used in cell-phones, so makes sense to

have support for camera-phone without extra chip being

needed.

29

Touchscreen Display Port

30

UART – serial port

• Note: Asynchronous, no clock (unlike USART)

how do both sides agree on speed?

• Often useful on embedded boards and old systems, might

be only way to reliably connect

• RS-232, originally for teletypes

• 3-15V high, -3 to -15V low

• start/stop bits, parity, bit-size

• Hardware vs Software flow control

• Speeds 300bps - 115000bps and beyond

31

• 50feet (15m) w/o special cables

• 3-pin version (transmit, receive ground). Also 5-pin HW

flow control (CTS/RTS). Can have 2-pin version if only

want to transmit

• These days often hook up USB connector

• What does 9600N81 mean?

32

Pi Serial Ports

• Raspberry Pi has two serial ports, good one and lousy

one

They switched them up with Pi3

• Pi does TTL (5v/0) not RS232

• Does support HW flow control, but need to activate

those pins custom, is a bit complicated

• Use TTL to USB serial converter usually.

Tell story of the prolific bricking the firmware?

33

Pi SMI

• https://iosoft.blog/2020/07/16/raspberry-pi-smi/

• Secondary Memory Interface

• Available on Pis

• Allows creating wide parallel bus out of GPIOs

• Not well documented

34

https://iosoft.blog/2020/07/16/raspberry-pi-smi/

Bluetooth

• Basic unit: piconet, master node and up to seven

active slave nodes within 10m

• Many can exist in an area, and can be connected by a

bridge. Connected piconets are called a scatternet

• There can also be up to 255 “parked” nodes in a picnoet

• When parked, can only respond to activation on beacon

• Hold and siff?

• Slaves designed to be cheap, so dumb. Master is smart

and runs them. slave/slave communication not possible

35

• Master broadcasts clock 312.5us. Master transmits in

even, slave in odd.

• Radio layer – 2.4GHz, 10 meters. 79 channels of 1MHz.

• pairing

• Bluetooth V1.1 has 13 different application protocols.

• Bluetooth 4.0 (Bluetooth Low Energy) (2010)

◦ 25Mbps/200 feet

◦ Entirely new stack, designed for low power rapid setup

links

◦ Not backwards compatible, but same frequency range

◦ New profiles

36

• Linux interface: depends on type. Filetransfer/obex.

Audio (looks like an audio driver) network device, serial

device

37

Bluetooth and Linux

• Two competing stacks, BlueZ and Affix

sudo bluetoothctl

[sudo] password for vince:

[NEW] Controller B8:27:EB:52:DD:E8 linpack-test [default]

[bluetooth]# power on

Changing power on succeeded

[bluetooth]# scan on

Discovery started

[CHG] Controller B8:27:EB:52:DD:E8 Discovering: yes

38

[NEW] Device AC:37:43:89:4C:02 HTC BS 02CA47

[NEW] Device AC:37:43:89:2F:86 HTC BS 86B06E

[CHG] Device AC:37:43:89:2F:86 RSSI: -90

[bluetooth]# scan on

Failed to start discovery: org.bluez.Error.InProgress

[bluetooth]# connect AC:37:43:89:4C:02

• obexpushd. Appears as serial port?

39

