
ECE 471 – Embedded Systems
Lecture 33

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

30 November 2022

http://web.eece.maine.edu/~vweaver

Announcements

• HW#10 was assigned

• Presentations are starting

• Feel free to return borrowed hardware.

• Tentative presentation schedule was sent out

1

Final Preview

• Monday, December 12th, 12:15pm - 2:15pm

• Is cumulative for whole class, but concentrates on

material from latter half of class. *No assembly

language*

• Know the definitions of an embedded system and be able

to say if a certain machine meets them.

• Know hard/soft/firm realtime

2

• Know the benefits/downsides of an operating system

• Security/Code Quality – mostly be aware of what things

can go wrong if you are not careful when coding

• Embedded busses – know the relative tradeoffs between

i2c, spi, and 1-wire. Mostly speed, distance, number of

devices

• Power/Performance like HW10

• Give you some C code from one of the homeworks,

comment it

3

HW#9 – Review

4

HW#9 – Code

• C code review

• Do note, it’s an LED display not LCD

• Error checking. Be sure not to segfault if dev not there!

• Heisenbug if not init buffer[0]

• How do you convert from float to decimal?

◦ 45.9 print as 45.8?

Floating point math is a pain! What do you get if you

do int result=10*(45.9-45);? 9.000000? Print

more digits 8.9999999999999857891452847979963 for

5

fp to int conversion just drops the floating point part,

doesn’t round

• Following a spec?

◦ Corner cases

◦ should shutdown display() clear the display?

Maybe, makes it harder to grade.

◦ Single-digit temps, be sure to remove leading zeros

◦ sig-figs for -1.0

◦ right justified?

◦ is Zero negative?

◦ Rounding

6

◦ Do you need a . after a three digit temp?

◦ Left/right justified for single digit

◦ Oddly placed minus sign

◦ Reporting error! Must be sure display not printing

invalid info! (door on walk-in oven. If it goes from

70F to 1000F (off scale) between readings, don’t want

it to stay at 70F, you want ERR or HOT or some

way to notify something is wrong) More realistically,

probe wire broke, should it just report last reading? Or

maybe go blank?

7

HW#9 – Questions

• Test inputs: try to have one in each case. Also might

be nice to check each digit 0..9 to make sure those are

all printing well.

• List an *example* of poorly written embedded code.

• Why write good code?

Cut-and-pasting, good practice, among other reasons.

• Why is touch useful? force make to rebuild

For some reason a number of assignments somehow

didn’t have updated time in the tar file.

8

• 2038 problem

Time in Linux is seconds since 1-1-1970. Not a problem

64-bit machines, but overflows in 2038 for 32-bit. Can

avoid with a 64-bit system or else a specially patched

Linux system

* discuss y2k problem ** worst problem year 19100 on

websites

Recent microsoft problem, virus signatures, YYMMDD0001,

when year 2022 doesn’t fit in 32-but number. Oops.

• ctime – last status (metadata) change (originally create

time) things like permissions change, ownership change,

9

rename

mtime – last modified

atime – last access

• In stat syscall. stat command. Why atime bad?

noatime, relatime

• utime() used by touch. Cannot change ctime, set to

current time

• why not believe timestamp? maybe could look at ctime.

also set clock back if own machine.

HW assignment at Cornell

10

Gave Sample Presentation of Chiptune
Player

11

Other busses

• Beyond this we didn’t cover in class this year

12

CANbus

• Automotive. Introduced by BOSCH, 1983

• One of OBD-II protocols

• differential, 2 wires, 1MBps important things like engine

control

• single wire, slower cheaper, hvac, radio, airbags

13

CANbus Protocol

• id, length code, up to 8 bytes of data id (usually 11 or

29 bits) type and who is sending it. Also priority (lower

is higher) length is 4 bits. some always send 8 and pad

with zeros

• Type is inferred from id. Can be things like engine RPM,

etc

• DBC database has the ids and values. ASCII text

database, hard to get legally. g

14

• Dominant/Recessive. Message with lowest ID wins

arbitration.

• CAN-FD – extended version with larger sizes

15

CANbus Linux

• Can4linux – open("/dev/can0"); read(); write();

External project?

• SocketCAN – contributed by Volkswagen. In kernel.

Uses socket interface. /Documentation/networking/can.txt

16

CANbus on Pi

• Not by default

• Can get SPI to CANbus adapters

17

USB

• Universal Serial Bus

• Designed to replace all of the various cables on a PC

with one type (keyboard, mouse, printer, serial, SCSI,

joystick)

• How successful was that?

• Way more complex than most previous interfaces

http://www.usbmadesimple.co.uk/index.html

18

http://www.usbmadesimple.co.uk/index.html

USB 1.0

• 1996

• Low Speed

◦ 1.5Mbit/s (keyboard, mouse, etc)

◦ Thinner, flexible cable

• Full Speed

◦ 12Mbit/s (disk, USB key)

• USB 1.1 – ?

19

USB Physical Layer

• 2-5m cables

• 4 pins. 5V, GND, D+, D-. Differential signaling

(subtract). More resistant to noise.

• Micro connectors have extra pin for on-the-go (says if A

end or B end gnd vs v+)

• Unit load, 100mA. Can negotiate up to 500mA (2.5W)

(more USB 3.0)

• Up to 127 devices (by using hubs). Up to 6 levels of

hubs. Powered vs not.

20

• Enumeration, vendor and device

• Connectors. A/B. Designed so only one end goes to

host. Micro, mini.

21

USB 2.0

• 2000

• High Speed 480Mbit/s

22

USB 3

• USB 3.0 – 2008 – SuperSpeed 5GBit/s (though hard to

hit that) Full Duplex (earlier half duplex)

• USB 3.1 – 2014 – SuperSpeed+ 10Gbit/s

• Backwards compatible, has 5 extra pins next to standard

micro with GND, SSTX+/- and SSRX+/- (full duplex)

• Connector often blue

23

USB C

• USB-C – 2014

• 24-pin

◦ 4 power/ground pairs

◦ two differential non-super-speed pairs,

◦ four pairs of high-speed data bus

◦ two sideband pins,

◦ two pins for cable orientation

• cables can be USB2, USB3, USB3.1

• up to 5A(20V=100W) but 3A more common

24

• wrong pullup can cause cable that damages hardware

25

USB 4

• 2019

• Requires USB-C cable

• Can carry displayport, PCIe

• Support in Linux 5.6

26

USB 1.1 and 2.0 Signaling

• Differential signaling, twisted pair, 90Ohm impedance

• Low+Full = 0V low, 3.3V high, not terminated

• High = 0V low, 400mV high, terminated with resistor

• Device Detection

◦ Host, 15k pulldown pulls data lines to 0 (nothing

connected, SE0)

◦ USB device pulls line high with 1.5k which overpowers

pulldown. Full bandwidth D+ high, low bandwidth D-

high

27

◦ Some chargers use special resistors across D lines to

indicate power they can draw.

• J and K states.

• NRZI line coding – 0 signaled by J to K (switching

state). 1 signaled by leaving as is

• Bit stuffing – after six consecutive 1s must include 0

• starts with 8 bit synch – 00000001 which is KJKJKJKK.

Data then sent. End marked by 00J.

• Reset by 10ms SE0

• Highspeed uses ”chirping” to negotiate speeds, during

reset chirps J and K

28

• Example from Wikipedia CC0:

29

USB 3.0 Signalling

• SuperSpeed, separate lines, but original lines used to

config

• SuperSpeed uses 8b/10b encoding (limits bandwidth),

CRC, other features

• SuperSpeed+ uses 128b/132b encoding

30

Latency

• For Low and Full shortest transaction time is 1ms. Can

this be a problem?

◦ Low latency gaming keyboards https://danluu.

com/keyboard-latency/

◦ Keyboard latency (scan keys, report keycode)

◦ USB latency to system

◦ Interrupt latency

◦ OS update screen

◦ LCD monitors often buffer a few frames

31

https://danluu.com/keyboard-latency/
https://danluu.com/keyboard-latency/

◦ Old Apple II (1MHz 8-bit) could go from keypress

to screen faster than modern keyboards even finish

scanning

32

USB Protocol

• Various packets sent

Huge list of them

• Checked by CRC

• Low power suspend mode, no more than 2.5mA

• Signal sent to all devices on USB bus, all but addressed

one ignores

33

USB Design

• Each device has endpoint

• isochronous – guaranteed data rate but with some

potential data loss (video)

• interrupt – low-latency, like keyboards

• bulk – disk access

34

USB Linux

• Linux drivers

– Device classes – HID, audio, etc. One common driver

can handle all devices of a class

– Specific – device driver is board specific and must have

a list of all vendor/device IDs that are supported

• libusb

Allow direct userspace access to USB interface

Used by low-level things that might not need driver

35

old cameras (not standardized), custom hardware

36

USB on Rasp-pi

• Pi4 has USB 3.0

• USB-OTG – on the go. Allows device to act like a host

(so can hook up devices as per normal) or as normal

USB device. Decides which based on whether A or B

cable plugged in, check ID pin (micro/mini have 5th

pin)

The Pi-B does not support running in gadget mode

externally (a hub in the way) and the OTG hardware

requires more software support than (it is simpler) than

37

regular USB.

• USB 2.0 (sorta). Cannot supply full power (why? Only

1A power supply typical). Also cannot handle high-

bandwidth things like audio cards and USB-cameras

well.

• USB-host – standard USB port. Cannot provide high

current, so use a powered hub if using anything more

than keyboard or mouse

38

