
ECE471: Embedded Systems – Homework 5
i2c interface and LED Display

Due: Friday, 6 October 2023, 1:00pm EDT

1. Use your Raspberry Pi for this homework.
In addition you will need one 4x7 segment LED display that was handed out in class (if you missed
class, stop by my office to pick one up). Note: this display is on loan, and we will use it for three
homework assignments and then you should return it by the end of the semester.

More info on the display can be found here: http://www.adafruit.com/products/880

Camera

Pin1 Pin2

Composite

Audio

HDMI

Power

Pin25 Pin26

Ethernet

USB

Audio/Video

Pin1 Pin2

Ethernet

USB USB

Power

HDMI

Audio/Video

Pin1 Pin2

Power

HDMI

HDMI

USB USB
Ethernet

Figure 1: Location of header on Raspberry Pi Model 1B, 1B+/2/3, 4B

2. First you will need to hook up the LED display. You can use Figure 1 and Table 1 for guidance.

(a) Hook the display to your pi on a breadboard:
Connect 3.3V on the Pi to + on the LED Display.
Connect GND on the Pi to - on the LED Display.
Connect SDA on the Pi to D on the LED Display.
Connect SCL on the Pi to C on the LED Display.

(b) Enable i2c support in Linux running on your pi.

• With current Raspberry Pi OS the easiest way is to run sudo raspi-config select
“Interface Options” then “I2C” then say yes to enable support.

• You might have to reboot the pi for it to fully take effect.
• To allow accessing i2c as a normal user (without sudo) run this command:
sudo addgroup username i2c
where username is your username.

http://www.adafruit.com/products/880


Table 1: Raspberry Pi Header Pinout
3.3V 1 2 5V

GPIO2 (SDA) 3 4 5V
GPIO3 (SCL) 5 6 GND

GPIO4 (1-wire) 7 8 GPIO14 (UART_TXD)
GND 9 10 GPIO15 (UART_RXD)

GPIO17 11 12 GPIO18 (PCM_CLK)
GPIO27 13 14 GND
GPIO22 15 16 GPIO23

3.3V 17 18 GPIO24
GPIO10 (MOSI) 19 20 GND
GPIO9 (MISO) 21 22 GPIO25

GPIO11 (SCLK) 23 24 GPIO8 (CE0)
GND 25 26 GPIO7 (CE1)

ID_SD (EEPROM) 27 28 ID_SC (EEPROM)
GPIO5 29 30 GND
GPIO6 31 32 GPIO12

GPIO13 33 34 GND
GPIO19 35 36 GPIO16
GPIO26 37 38 GPIO20

GND 39 40 GPIO21

(c) Sanity check your i2c setup.

• If you have your pi on a network you can run
sudo apt-get install i2c-tools
to install the i2c-tools package. Then you can scan the bus to be sure you have things hooked
up properly. If you can’t install the package, skip the next step, as it’s not really necessary
(it’s just a good way to verify you have things wired up correctly).

• Run sudo i2cdetect -y -r 1 and if things are working you should see a “70” at
address 70. This means Linux can see your device at address 0x70.

0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: 70 -- -- -- -- -- -- --

2



3. Documentation
The display is run by a ht16k33 chip. You can get the datasheet here:
http://www.adafruit.com/datasheets/ht16K33v110.pdf

4. Getting the Code
Download the template code from the ECE471 website:
http://web.eece.maine.edu/~vweaver/classes/ece471/ece471_hw5_code.tar.gz

Uncompress it with tar -xzvf ece471_hw5_code.tar.gz

5. Light up the Entire Display (3 points)

Modify the provided display_test.c file. Running make should build your code. If you get
clock skew errors, either set your clock to current time or else run make clean before running
make.

Comment your code! Fix all compiler warnings!

Make sure you to check for errors and report them back to the user and exit if appropriate.

Here are the steps needed to talk to the device:

(a) Open the device using the open() function. This returns an integer file descriptor for the device,
or -1 on error. The call will look something like
fd = open("/dev/i2c-1", O_RDWR);

where O_RDWR means open for reading and writing.

(b) Set the device address. An IOCTL is used for this.
result=ioctl(fd, I2C_SLAVE, 0x70);

where I2C_SLAVE is a constant defined in the linux/i2c-dev.h header, fd is the file
descriptor from earlier, and 0x70 is the device address from the data shee. A negative value is
returned on error.

(c) Commands to the device are described starting on page 10 of the data sheet. Commands are an
8-bit value, with the command type in the top 4 bits and the data in the low 4 bits.

(d) Send a command to activate the oscillator on the device by modifying the “System Setup Regis-
ter”. The high 4 command bits should be 0x2 and the low 4 bits should be 0x1. To generate this
constant, shift the command left by 4-bits, then logical-or the low bits into the value. Write this
8-bit value to the device. The code will look something like this:

unsigned char buffer[17];

buffer[0]=(0x2<<4)|(0x1);
result=write(fd, buffer, 1);

This says we want to write 1 byte to the file desriptor fd, and the byte we want to write is found
via buffer which points to the beginning of a 17-byte long char array declared earlier. The
return value is how many bytes were successfully written.
Feel free to use C pre-processor defines to make the constants for the commands and data easier
to read.

3

http://www.adafruit.com/datasheets/ht16K33v110.pdf
http://web.eece.maine.edu/~vweaver/classes/ece471/ece471_hw5_code.tar.gz


(e) Next turn on the display, with blinking disabled. Do this via the “Display Setup Register”

(f) Next set the brightness. Set it to a value between 10 and 15 (your choice). Do this via the
“Display Dimming Data Input”. You will need to get the proper values from the data sheet.

(g) Finally write out the pattern you want on the display. For this simple test case we will write all
1s to make the display completely light up.
To do this, write the “Display Data Address Pointer” which for our case is 0, then followed by
16-bytes holding the two 8-bit values for each of the 8 rows. It is easiest to just write all 17 bytes
at once.

unsigned char buffer[17];
int i;

buffer[0]=0x0;
for(i=0;i<16;i++) buffer[1+i]=0xff;
write(fd,buffer,17);

(h) Now close the file descriptor with close(fd); and exit the program. The display will keep
displaying the last thing written to it.

6. Display ECE 471 (3 points)

For this part of the homework, modify display_final.c. First copy your display_test.c
file over as a starting point:

cp display_test.c display_final.c.

Then work on the display_final.c code.

The goal is to make the display show the following pattern:

• ECE
pause for 1 second

• 471
pause for 1 second

• Then loop back to the beginning to display ECE again, and repeat forever (you can stop it by
pressing Control-C).

The display mapping for each LED segment is shown in Figure 2.

As an example, to display the letter ‘E’ in the far left column, you would do:

unsigned char buffer[17];

buffer[0]=0x00; // offset pointer
buffer[1]=0x79; // Column 1, Segments ADEFG
buffer[2]=0x00; // next 8 bits of column 1, not connected
buffer[3]=0x00; // Column 2, empty
buffer[4]=0x00; // next 8 bits of column 2, not connected
...
write(fd,buffer,17);

4



A
B

C

D

E

F

G

P

B

1 2
3

4 5

byte 0 = 0x00 (display pointer offset)

byte 1 = (1P, 1G ,1F, 1E, 1D, 1C, 1B, 1A)

byte 2 = 0x00

byte 5 = (X, X, X, X, X, X, X, 3:, X)

byte 6 = 0x00

byte 7 = (4P, 4G, 4F, 4E, 4D, 4C, 4B, 4A)

byte 8 = 0x00

byte 9 = (5P, 5G, 5F, 5E, 5D, 5C, 5B, 5A)

byte10−byte16 = 0x00

byte 3 = (2P, 2G, 2F, 2E, 2D, 2C, 2B, 2A)

byte 4 = 0x00

Figure 2: LED Display Segment Mapping

The Linux/C function to pause (sleep) for a period of time is usleep(). The parameter is the amount
of time to sleep in micro-seconds.

7. Something Cool (1 point)

Copy your display_final.c code over to display_cool.c and modify it to do something
extra.

Some possible suggestions:

• Record an i2c write transaction using an analog discovery board.
See if you can interpret the SDA/SCL lines as bits are being sent. Some logic analyzers (possibly
the analog discovery?) are smart enough to interpret i2c and can decode the transaction for you.
Send an image of the plot along with your homework submission.

• Display ECE 471 on the display but have it scroll left or right.

• Make a little animation on the screen, bouncing ball, etc.

• Display your name, or as much of your name as you can with 7-segment displays.

• Display the time. (the time() and localtime() routines will be helpful here).

Put into the README a note describing the something cool that you chose.

5



8. Questions (2 points)
Answer the following in the README file: (note, we won’t cover some of these topics in class until
Monday)

(a) What part of the Raspberry Pi (hardware) is in charge of the initial boot process? Is this normal
for an ARM board?

(b) What is the generic name for the code/program responsible for loading the operating system
kernel into memory and running it?

(c) Why is the /boot partition on the Pi a FAT32 filesystem?

(d) In the i2cdetect output in part 2c you can see that addresses 0-2 and 0x78-0x7f are not
scanned. Why are these addresses skipped?

9. Linux Fun (1 point)

(a) You can use the wc word-count program to count the lines, words, and bytes in a file.
Use wc -l display_final.c (that’s a lower-case L) to count the number of lines in your
display_final.c file. Report how many lines it is.

(b) You can use the diff command to compare two files and see the differences between them. Run
diff -u display_test.c display_final.c

You can use the pipe character | to “pipe” the output of one command into the input of another.
Pipe the output of diff into wc and report how many lines are in the diff file:
diff -u display_test.c display_final.c | wc -l

10. Submitting your work

• Run make submit which will create a hw5_submit.tar.gz file containing Makefile,
README, display_test.c, display_final.c, and display_cool.c
You can verify the contents with tar -tzvf hw5_submit.tar.gz

• e-mail the hw5_submit.tar.gz file to me by the homework deadline. Be sure to send the
proper file!

6


