
ECE 471 – Embedded Systems
Lecture 2

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

30 August 2023

https://web.eece.maine.edu/~vweaver

Announcements

• Warning: there’s a slight chance we might end up moving

classrooms if a few more people sign up for the course.

I’ll send an e-mail if this happens.

• Looks like we won’t have a TA

• Reminder: The class notes are posted to the website.

1

What does Embedded Hardware Look Like?

• Anything from 8-bit/tiny RAM to 64-bit 2GHz 2GB

• Performance has greatly improved over the years.

Modern embedded boards are as fast as

early supercomputers Cray2 (1985)=1.9GFLOPS,

pi3=5GFLOPS, pi4=10GFLOPS

Type Speed RAM Disk GPU
Intel Xeon 64-bit 4GHz 16GB 1TB Nvidia
ARM A53 64-bit(?) 1GHz 1GB 8GB VC4
ARM M0 32-bit 32MHz 16kB 128kB none
MOS 6502 8-bit 1MHz 64kB 140kB none

2

Processor Types / ISAs

• Intel/AMD x86/x86 64 (mostly in desktop/laptop/server)

• ARM (extremely common in embedded)

• RISC-V (newish, has relatively open licensing)

• Older RISC systems: Power, MIPS, SPARC

• Older CISC systems: m68k, VAX

• Older 8-bit: 6502, 8051, z80, 6809, 68HC11

• Many many more

3

Embedded Systems 20 years ago

• Somewhat dated list, from EE Times 2003. Multiple
answers so doesn’t necessarily sum up to 100%

• 8-bit processors

– Microchip PIC – 43%
– AVR, etc. 8051 – 55%
– Motorola 68xx – 36%
– Zilog Z80 – 15%

• 16-bit processors

– 8086/80186/80286 – 41%
– 68HC12 – 21%

4

Are 8-bit Systems Still Used?

• One popular example is the Arduino with 8-bit AVR

ATmega

• Also, some chips like 8051 were popular for years (still

found in many USB devices), so legacy systems still

around at companies that need to be maintained.

5

We’ll Mostly Use ARM in this Class

• Widely used

• You’ll see if it you move to industry

• Other classes in ECE using it

• There is some concern recently, mostly due to the

uncertainty of their parent company (failed purchase

by NVIDIA) and licensing costs

6

Microprocessors

• First one considered to be 4004 by Intel (for use in

calculator)

• First to include all of a CPU on one chip. Before that

there were processors, but often were made out of many

discrete chips (sometimes entire boards full of logic)

7

Simple 8-bit CPU Block Diagram

Addr

Data
Memory

ALU

registers

CPU

PC

0 1 0 1 0 1 1 0

A0

A2

A1

1

0

1

D0

D1

D2

D3

D4

D5

D6

D7

Modern computers are more or less incomprehensible and

essentially magic. You can take ECE473 or ECE571 to

learn more about how they work.

8

What makes a processor 8-bit vs 16-bit vs
32-bit?

• The size of the registers?

• The size of the address bus?

• The size of the data bus?

• The size of the ALU (integer math unit)?

• The size of the PC (program counter)?

Believe it or not giant video-game system flamewars

happened over these questions.

9

Answer Not Always Clear

• On modern systems it typically is the integer registers,

as well as the maximum size of a memory pointer (which

typically is the same as the integer register size)

• On many systems though it is not as clear cut.

10

8-bit Systems

• A “pure” 8-bit system would have 8-bit registers (0-255),

8-bit ALU, and an 8-bit data bus.

• However an 8-bit address bus (only 256 bytes of RAM)

is too limiting so most 8-bit processors (6502, z80, 8080,

etc) had 16-bit address busses, 16-bit PCs, and often

16-bit register capability

11

16-bit Systems

• Most 16-bit processors were equally complex.

• The 8086 had 16-bit registers and 16-bit data bus, but

a 20-bit address bus with complex addressing.

• To complicate things, the 8088 was 8086 compatible but

had only an 8-bit data bus (to save cost, with the side

effect of making memory accesses take twice as long)

12

32-bit Systems

• Most 32-bit processors have 32-bit registers and 32-bits

of address space, but that limits to 4GB

• Some have extensions (x86 and ARM) allowing 36-bits

of address space.

• Data bus has been made complex by caches and are

often quite large

• Often there are larger registers on chip (64-bit or 80-bit

floating point, 128-bit SSE, 256-bit or 512-bit AVX)

13

64-bit Systems

• Most 64-bit processors have 64-bit registers, but their

address bus is often limited (to 36 - 40 bits, 48-bits,

maybe 56-bits nos this is complicated by virtual memory)

• It was always a problem of programmers stealing top bits

of pointers as being “unused” only to be sad later when

things got bigger (ARM26, IBM, macos/m68k)

• A few recent chips have “ignore top bits” option to

allow this (ARM: TBI (top bit ignore), Intel LAM (Linear

Address Masking))

14

Other Possibilities?

• 128-bit systems? RISCV has a spec

• Do machines have to be a power-of-two in bitness? No,

not necessarily. 36-bit machines were once quite popular.

15

Microcontroller

• Microcontroller was generally a small CPU for use in

embedded systems

• You’ll still hear the term used

• Sometimes will be used specifically for low-end embedded

systems

16

System-on-a-Chip / System-on-Chip

• Moore’s law allows lots of transistors

• Discrete Chips: CPU, GPU, Northbridge, Southbridge,

(and older days, FPU, MMU, etc)

• System-on-a-Chip (SoC): All parts of computer on-chip

CPU, DSP, memory, timers, USB, voltage regulators,

memory controllers

• System-in-Package (SiP): various chips in one package

17

Extra Features on SoCs

• Parallel and Serial I/O

• A/D, D/A converters

• GPIO pins

• i2c, CAN, SPI, 1-wire, USB busses

• FPGA?

• Low-power

• Sound, DSP

• Video, GPU, Video Codecs

• Timers, PWM

18

Dedicated Hardware vs Programmable

• ASIC – Application Specific Integrated Circuit

direct wiring of state machines / logic on silicon die

• FPGA – reprogrammable low-level logic

• Microcontroller – can do what above do, but in software

• Why use ASIC: could be faster, but what if mistake?

Why use FPGA: could be faster, more expensive/complex

Why use microcontroller: Cost. Time to market. Bug-

fixes (easier to fix in software)

19

Tradeoffs

It’s all about tradeoffs

• Power

• Performance

• Cost

• Compatibility

• Time to Market

• Features

20

Challenges vs Regular Systems

• Programming in constrained environment (cross-

compiling?)

• Security

• Safety

• Real-time

• Power consumption

• Long-life (embedded device might be in use for decades)

• Testing

• Bug-fixing

21

Discussion

• What concerns might you have when designing an

embedded system?

Security is a big one these days

• What language might you write your code in?

C is still popular despite security issues.

22

