ECE 471 — Embedded Systems
Lecture 5

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

8 September 2023

https://web.eece.maine.edu/~vweaver

Announcements

o HW#2 will be posted

e Note you won't need to bring your Pi to class

Why C?

e Portability (sort of) (i.e. how big is an int)

e Higher than assembly (barely)

Pearce: “all the power of assembly with all the ease-of-
use of assembly”

e \Why over Java or C++47
They can hide what is actually going on. C statements
map more or less directly to assembly. With things like
operator overload, and exceptions, garbage collection,
extra layers are added. This can matter for both size,

-y)

speed, determinism, and real time.
Might be restricted to a subset of C++

e Why over python?

Mostly speed. (although you can JIT) Also if accessing
low level hardware, in general you are calling libraries
from python that are written in C anyway.

e What about Rust and Go? Don't overlook momentum
of an old platform, sample code, libraries, etc.
Linux-kernel devs have stability concerns, Rust still fast
moving and have a stable build environment can be

complex

-y 3

Downsides of C? — Undefined Behavior

e Compiler is allowed to do anything it wants (including
dropping code) if it encounters something undefined by
the standard.

e This can be something as simple as just overflowing a
signed integer or shifting by more than 32.

e People joke of “nasal demons” i.e. standard says

anything can happen here, even demons flying out of
your nose

Downsides of C? — Too Much Trust

e "Enough rope to shoot yourself in the foot”.

e C gives a lot of power, especially with pointers.
e It assumes you know what you are doing though.
e With great power comes great responsibility.

Downsides of C — Security

e Biggest issue is memory handling (lack thereof)

e Buffer overflows

int a[b];

al0]=1; // fine
a[10000000]=1; // obviously bad
al[b]=1; // subtly bad

e How can that go wrong? Crash? Corrupt Memory?
Wrong results? Total system compromise?

-y 6

e Overwriting stack can be bad, as return address there

e Especially if untrusted user input going into the variable

Homework #2 — Background

e It's mostly about getting everyone up to speed on the Pi
as not everyone has used one before
o Many ways to set up your Pi for use, everyone has a
different preference
o Be sure to change your password from default
e Also a small C coding assignment, and some short-answer
questions.

Using the Pi for this Class — Two
Challenges

e Getting Pi to the point you can log in

e Getting files onto and off of the board. (Definitely
needed for homework)

Installing Linux

e Any Linux fine, | typically use Raspberry Pi OS
(Raspbian)
Using the same that | do Is easiest and | can more easily
help

e Easiest way is to buy SD card with image pre-installed

e If starting with a blank SD card:
o https://www.raspberrypi.com/software/
has images and even a tool you can use that will help

-y 10

https://www.raspberrypi.com/software/

you install things.

o This includes the ability to pre-configure things like
password, ssh, keyboard, locale, wifi

o Warning: it's a large download (900MB?7) and takes a
while to write to SD (which is slow)

e If you end up instead manually writing an image to SD
using command-line linux (the dd tool or similar be sure
to get right partition as the destination. It's easy to
accidentally overwrite your laptop/desktop’s hard drive

-y 11

Booting Linux on Pi

e Why called booting?

e Bootstrapping?

e Pull oneself up by own bootstraps? Meaning to get
something going starting with nothing

/Y 12

Getting Linux going

Put SD card in
Hook up input/output (see later)

Plug in the USB power adapter; *NOTE* can also draw

bower over serial or usb or sometimes
_ights should come on and blink and s
f you have a display hooked up A num

HDMI
nould boot

per of raspberries

should appear and some Linux boot messages

Things can also go wrong in ways hard to troubleshoot

13

First Boot

e First boot a menu comes up. This varies depending
on what OS you are on, I'm assuming Raspbian vll
(Bullseye) here
o Will prompt for keyboard type. You want standard
US English keyboard, but by default it will give you
UK (Pis are from England). It can be a bit hard to
navigate to what you want

o It will ask for username password
In the old days it would just default to pi/raspberry.

-y 14

Why was that bad security-wise?
e At this point it might continue until you get to a login
prompt

-y 15

More Configuration

e Once logged in you can run “raspi-config” to configure
more things
e System Settings
o Enable Wifi
o Pick a Hostname
o various other things
e Display Options
o Only matter if you are using a TV as a display
e Interfaces

-y 16

o Can enable ssh for remote network logins
o Can also enable SPI, i2c, and 1-wire that we'll use in
class
e Advanced
o You might be able to expand the disk image to fill the
whole sd-card, not sure if that's automatic
o Performance: can overclock, select how much RAM
used by GPU
e Localization
o Probably already picked keyboard
o Can pick language. Probably your best bet is

-y 17

en_US.UTF-8

o Pick timezone: Americas/NY

o Can configure Wifi more (what frequencies it can use
depend on what country you are in)

/Y 18

Other Optional things you can do

e If on network, can install updates
sudo apt-get update
sudo apt-get upgrade

19

Connecting to the Pi

e Monitor/Keyboard (Easiest)
e Network Connection

e Serial Connection

20

Monitor and Keyboard

e HDMI monitor, USB keyboard, USB mouse (optional
unless using gui)

e Need HDMI cable (micro-HDMI on pi4)

e Used to be a nice setup in the Electronics Lab but |
don’t think that exists anymore unfortunately.

/Y 21

Network /Ethernet Connection

e Ethernet cable

e Either an Ethernet port, or connect direct to PC
e If something goes wrong on boot hard to fix

e Can also try this with a wireless connector

e Can hook it onto dorm network, but need to request a
static IP. Can also direct connect between PC (configure
pi with a local address like 192.168.1.2 and set your

-y 2

wired Ethernet on PC side to something like 192.168.1.1
and then use ssh to connect)

/Y 23

Serial Connection

e Old fashioned, but very good skill to have.

e Need USB/serial adapter

e Need another machine to hook to, with a comm program

minicom, putty

e Thankfully unlike o
modem cable. Stil

d days don't need specific NULL
might need to set some obscure

COM port settings (
TERM settings (AN

BAUD, stop bits, parity) and console
SI, VT102).

24

Other/obsolete

e In way past times people used “netatalk” on MacOS
| think this doesn’t work anymore

e There are rumors about being able to login using USB-C
on Pi4 but haven't seen it done

-y 25

Transferring Files

e Easiest: if set up like a desktop just download with
browser

e USB-KEY: transfer data using a regular USB-key In
theory the Pi should auto-mount the drive for you
May need to mount / umount by hand or be root

e Network: just use ssh/scp

e Serial: sz/rz ZMODEM

e Putting sd-card (after unpowering!) in another machine.
Challenge: Filesystem is in Linux format (ext4) so

-y 26

Windows and Macs can't read it by default.

27

Homework #2 — Unpacking Assignment

o It's a .tar.gz file. What is that?

e Sort of the Linux equivalent of a zip file

e tar = tape archive (ancient history) that runs lots of files
together
gz = gzip, which compresses it (makes it smaller)

e you may see other (Z, bz2, xz). What are the differences?
Mostly in compressed size vs compress/uncompress
resources
gzip good enough for what we are doing.

/Y 28

Homework #2 — Editing C on Pi

e Take some existing C code and modify it.
e Can use the editor of your choice. Many on Linux.
o “nano’ Is easy
o “vim" if you are serious about Linux.
o “emacs’ — I've known some emacs wizards
o Also various graphical ones

o Modern (MS VS Studio? Eclipse? Atom?) but can
take more RAM than the Pi has

/Y 29

What you will do before starting HW?2

e Get Linux installed

e Login with the default user/password (on Raspbian it is
pi / raspberry)
You can use adduser to add a new user and/or passwd
to change a password.

e Learning a little bit of Linux. Most importantly compiling
C/asm programs and transferring HW assignments in
and out

/Y 30

SD Card Digression

e \Why are they so slow?

e BACK UP YOUR WORK. ALL THE TIME. SD cards
corrupt easily. Why?

e SHUTDOWN CLEANLY

menu or shutdown -h now

e [ry to get things done a little before the deadlines, that
way you have some time to recover if a hardware failure
does happen.

-y 31

Using the Pi

e | usually assume you'll be doing things at the command
line, either at the text console or by starting a terminal
emulator (like 1xterm) in the GUI interface

-y 32

Homework #2 — Editing C on your own
computer?

e if you want you can even code it up on your
desktop/laptop, but you probably want to copy it over
to test before submitting.

e Be careful not to introduce errors if cutting and pasting

/Y 33

C compiler

e C compiling on Linux
We will use gcc (what others exist. clang?)
Typical command line is something like:
gcc -02 -Wall -o hello_world hello_world.c
-02 is optimization, -Wall is show all warnings
A lot more options, see man page

34

Makefiles

e \We use a Makefile to automate the process.

e What is make?

e You give it a list of dependencies, then it automatically
sees what files have changed and then runs commands
to build things

o Feel free to play with it, but a warning, tabs are
significant so weird errors if you use spaces instead.

-y 35

Cross compiling

e Can compile for a different architecture, for example x86
to ARM

e Why do it? Faster. Target doesn't have enough
resources. Want to target multiple devices.

e To test would need an emulator (like gemu)

/Y 36

Comment your Code!

Why?

| will take points off it you don't.

Also helps other people looking at your code figure out
what's going on. Including me the graded. Including
you trying to re-use some code a year from now.

Having your name and a description of what the overall
file and each function does doesn’t hurt.

Even fancier commenting conventions companies will

37

have for automated tools.

Mostly comment non-obvious stuff.

So for(i=0;i<10;i++) not so much.

But something like i=4.3+10%j; vyes.

You can't really over-comment (well you can, but it's
harder to over-comment than under-comment)

/Y 38

Using git

e Not using gitlab like ECE271, was huge hassle

e Still idea to use some sort of source control management

(SCM)
e [here are actually worse than git out there

e \Who wrote git? Linus Torvalds.

/Y 39

Documentation on Linux commands

e Use man command where command is what you are
interested In

e Use man 1s to see how to use Is

e Also useful for functions man -a printf or random
stuff man ascii

-y 40

HW#2 Something Cool

e ANSI escape color/art — Demoscene!

e In old days: how could you do colors on screen?

e Over serial port, so couldn’t directly write to video card

e Escape sequences: A pattern not normally typed by
accident

e ESCAPE (ASCII 27) followed by [then some pattern of
characters.

e Can move cursor, change colors, etc.
e Back in the day | used to make a lot of ANSI/ASCII art.

-y 41

