
ECE 471 – Embedded Systems
Lecture 5

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

8 September 2023

https://web.eece.maine.edu/~vweaver

Announcements

• HW#2 will be posted

• Note you won’t need to bring your Pi to class

1

Why C?

• Portability (sort of) (i.e. how big is an int)

• Higher than assembly (barely)

Pearce: “all the power of assembly with all the ease-of-

use of assembly”

• Why over Java or C++?

They can hide what is actually going on. C statements

map more or less directly to assembly. With things like

operator overload, and exceptions, garbage collection,

extra layers are added. This can matter for both size,

2

speed, determinism, and real time.

Might be restricted to a subset of C++

• Why over python?

Mostly speed. (although you can JIT) Also if accessing

low level hardware, in general you are calling libraries

from python that are written in C anyway.

• What about Rust and Go? Don’t overlook momentum

of an old platform, sample code, libraries, etc.

Linux-kernel devs have stability concerns, Rust still fast

moving and have a stable build environment can be

complex

3

Downsides of C? – Undefined Behavior

• Compiler is allowed to do anything it wants (including

dropping code) if it encounters something undefined by

the standard.

• This can be something as simple as just overflowing a

signed integer or shifting by more than 32.

• People joke of “nasal demons” i.e. standard says

anything can happen here, even demons flying out of

your nose

4

Downsides of C? – Too Much Trust

• “Enough rope to shoot yourself in the foot”.

• C gives a lot of power, especially with pointers.

• It assumes you know what you are doing though.

• With great power comes great responsibility.

5

Downsides of C – Security

• Biggest issue is memory handling (lack thereof)

• Buffer overflows

i n t a [5] ;

a [0]=1 ; // f i n e

a [10000000]=1; // o b v i o u s l y bad

a [5]=1 ; // s u b t l y bad

• How can that go wrong? Crash? Corrupt Memory?

Wrong results? Total system compromise?

6

• Overwriting stack can be bad, as return address there

• Especially if untrusted user input going into the variable

7

Homework #2 – Background

• It’s mostly about getting everyone up to speed on the Pi

as not everyone has used one before

◦ Many ways to set up your Pi for use, everyone has a

different preference

◦ Be sure to change your password from default

• Also a small C coding assignment, and some short-answer

questions.

8

Using the Pi for this Class – Two
Challenges

• Getting Pi to the point you can log in

• Getting files onto and off of the board. (Definitely

needed for homework)

9

Installing Linux

• Any Linux fine, I typically use Raspberry Pi OS

(Raspbian)

Using the same that I do is easiest and I can more easily

help

• Easiest way is to buy SD card with image pre-installed

• If starting with a blank SD card:

◦ https://www.raspberrypi.com/software/

has images and even a tool you can use that will help

10

https://www.raspberrypi.com/software/

you install things.

◦ This includes the ability to pre-configure things like

password, ssh, keyboard, locale, wifi

◦ Warning: it’s a large download (900MB?) and takes a

while to write to SD (which is slow)

• If you end up instead manually writing an image to SD

using command-line linux (the dd tool or similar be sure

to get right partition as the destination. It’s easy to

accidentally overwrite your laptop/desktop’s hard drive

11

Booting Linux on Pi

• Why called booting?

• Bootstrapping?

• Pull oneself up by own bootstraps? Meaning to get

something going starting with nothing

12

Getting Linux going

• Put SD card in

• Hook up input/output (see later)

• Plug in the USB power adapter; *NOTE* can also draw

power over serial or usb or sometimes HDMI

• Lights should come on and blink and should boot

• If you have a display hooked up A number of raspberries

should appear and some Linux boot messages

• Things can also go wrong in ways hard to troubleshoot

13

First Boot

• First boot a menu comes up. This varies depending

on what OS you are on, I’m assuming Raspbian v11

(Bullseye) here

◦ Will prompt for keyboard type. You want standard

US English keyboard, but by default it will give you

UK (Pis are from England). It can be a bit hard to

navigate to what you want

◦ It will ask for username password

In the old days it would just default to pi/raspberry.

14

Why was that bad security-wise?

• At this point it might continue until you get to a login

prompt

15

More Configuration

• Once logged in you can run “raspi-config” to configure

more things

• System Settings

◦ Enable Wifi

◦ Pick a Hostname

◦ various other things

• Display Options

◦ Only matter if you are using a TV as a display

• Interfaces

16

◦ Can enable ssh for remote network logins

◦ Can also enable SPI, i2c, and 1-wire that we’ll use in

class

• Advanced

◦ You might be able to expand the disk image to fill the

whole sd-card, not sure if that’s automatic

◦ Performance: can overclock, select how much RAM

used by GPU

• Localization

◦ Probably already picked keyboard

◦ Can pick language. Probably your best bet is

17

en US.UTF-8

◦ Pick timezone: Americas/NY

◦ Can configure Wifi more (what frequencies it can use

depend on what country you are in)

18

Other Optional things you can do

• If on network, can install updates

sudo apt-get update

sudo apt-get upgrade

19

Connecting to the Pi

• Monitor/Keyboard (Easiest)

• Network Connection

• Serial Connection

20

Monitor and Keyboard

• HDMI monitor, USB keyboard, USB mouse (optional

unless using gui)

• Need HDMI cable (micro-HDMI on pi4)

• Used to be a nice setup in the Electronics Lab but I

don’t think that exists anymore unfortunately.

21

Network/Ethernet Connection

• Ethernet cable

• Either an Ethernet port, or connect direct to PC

• If something goes wrong on boot hard to fix

• Can also try this with a wireless connector

• Can hook it onto dorm network, but need to request a

static IP. Can also direct connect between PC (configure

pi with a local address like 192.168.1.2 and set your

22

wired Ethernet on PC side to something like 192.168.1.1

and then use ssh to connect)

23

Serial Connection

• Old fashioned, but very good skill to have.

• Need USB/serial adapter

• Need another machine to hook to, with a comm program

minicom, putty

• Thankfully unlike old days don’t need specific NULL

modem cable. Still might need to set some obscure

COM port settings (BAUD, stop bits, parity) and console

TERM settings (ANSI, VT102).

24

Other/obsolete

• In way past times people used “netatalk” on MacOS

I think this doesn’t work anymore

• There are rumors about being able to login using USB-C

on Pi4 but haven’t seen it done

25

Transferring Files

• Easiest: if set up like a desktop just download with

browser

• USB-KEY: transfer data using a regular USB-key In

theory the Pi should auto-mount the drive for you

May need to mount / umount by hand or be root

• Network: just use ssh/scp

• Serial: sz/rz ZMODEM

• Putting sd-card (after unpowering!) in another machine.

Challenge: Filesystem is in Linux format (ext4) so

26

Windows and Macs can’t read it by default.

27

Homework #2 – Unpacking Assignment

• It’s a .tar.gz file. What is that?

• Sort of the Linux equivalent of a zip file

• tar = tape archive (ancient history) that runs lots of files

together

gz = gzip, which compresses it (makes it smaller)

• you may see other (Z, bz2, xz). What are the differences?

Mostly in compressed size vs compress/uncompress

resources

gzip good enough for what we are doing.

28

Homework #2 – Editing C on Pi

• Take some existing C code and modify it.

• Can use the editor of your choice. Many on Linux.

◦ “nano” is easy

◦ “vim” if you are serious about Linux.

◦ “emacs” – I’ve known some emacs wizards

◦ Also various graphical ones

◦ Modern (MS VS Studio? Eclipse? Atom?) but can

take more RAM than the Pi has

29

What you will do before starting HW2

• Get Linux installed

• Login with the default user/password (on Raspbian it is

pi / raspberry)

You can use adduser to add a new user and/or passwd

to change a password.

• Learning a little bit of Linux. Most importantly compiling

C/asm programs and transferring HW assignments in

and out

30

SD Card Digression

• Why are they so slow?

• BACK UP YOUR WORK. ALL THE TIME. SD cards

corrupt easily. Why?

• SHUTDOWN CLEANLY

menu or shutdown -h now

• Try to get things done a little before the deadlines, that

way you have some time to recover if a hardware failure

does happen.

31

Using the Pi

• I usually assume you’ll be doing things at the command

line, either at the text console or by starting a terminal

emulator (like lxterm) in the GUI interface

32

Homework #2 – Editing C on your own
computer?

• if you want you can even code it up on your

desktop/laptop, but you probably want to copy it over

to test before submitting.

• Be careful not to introduce errors if cutting and pasting

33

C compiler

• C compiling on Linux

We will use gcc (what others exist. clang?)

Typical command line is something like:

gcc -O2 -Wall -o hello world hello world.c

-O2 is optimization, -Wall is show all warnings

A lot more options, see man page

34

Makefiles

• We use a Makefile to automate the process.

• What is make?

• You give it a list of dependencies, then it automatically

sees what files have changed and then runs commands

to build things

• Feel free to play with it, but a warning, tabs are

significant so weird errors if you use spaces instead.

35

Cross compiling

• Can compile for a different architecture, for example x86

to ARM

• Why do it? Faster. Target doesn’t have enough

resources. Want to target multiple devices.

• To test would need an emulator (like qemu)

36

Comment your Code!

• Comment your code!!!!!

Why?

I will take points off it you don’t.

Also helps other people looking at your code figure out

what’s going on. Including me the graded. Including

you trying to re-use some code a year from now.

Having your name and a description of what the overall

file and each function does doesn’t hurt.

Even fancier commenting conventions companies will

37

have for automated tools.

Mostly comment non-obvious stuff.

So for(i=0;i<10;i++) not so much.

But something like i=4.3+10*j; yes.

You can’t really over-comment (well you can, but it’s

harder to over-comment than under-comment)

38

Using git

• Not using gitlab like ECE271, was huge hassle

• Still idea to use some sort of source control management

(SCM)

• There are actually worse than git out there

• Who wrote git? Linus Torvalds.

39

Documentation on Linux commands

• Use man command where command is what you are

interested in

• Use man ls to see how to use ls

• Also useful for functions man -a printf or random

stuff man ascii

40

HW#2 Something Cool

• ANSI escape color/art – Demoscene!

• In old days: how could you do colors on screen?

• Over serial port, so couldn’t directly write to video card

• Escape sequences: A pattern not normally typed by

accident

• ESCAPE (ASCII 27) followed by [then some pattern of

characters.

• Can move cursor, change colors, etc.

• Back in the day I used to make a lot of ANSI/ASCII art.

41

