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Announcements

• HW#2 will be posted

• Note you won’t need to bring your Pi to class
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Why C?

• Portability (sort of) (i.e. how big is an int)

• Higher than assembly (barely)

Pearce: “all the power of assembly with all the ease-of-

use of assembly”

• Why over Java or C++?

They can hide what is actually going on. C statements

map more or less directly to assembly. With things like

operator overload, and exceptions, garbage collection,

extra layers are added. This can matter for both size,
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speed, determinism, and real time.

Might be restricted to a subset of C++

• Why over python?

Mostly speed. (although you can JIT) Also if accessing

low level hardware, in general you are calling libraries

from python that are written in C anyway.

• What about Rust and Go? Don’t overlook momentum

of an old platform, sample code, libraries, etc.

Linux-kernel devs have stability concerns, Rust still fast

moving and have a stable build environment can be

complex
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Downsides of C? – Undefined Behavior

• Compiler is allowed to do anything it wants (including

dropping code) if it encounters something undefined by

the standard.

• This can be something as simple as just overflowing a

signed integer or shifting by more than 32.

• People joke of “nasal demons” i.e. standard says

anything can happen here, even demons flying out of

your nose
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Downsides of C? – Too Much Trust

• “Enough rope to shoot yourself in the foot”.

• C gives a lot of power, especially with pointers.

• It assumes you know what you are doing though.

• With great power comes great responsibility.
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Downsides of C – Security

• Biggest issue is memory handling (lack thereof)

• Buffer overflows

i n t a [ 5 ] ;

a [ 0 ]=1 ; // f i n e

a [10000000 ]=1; // o b v i o u s l y bad

a [ 5 ]=1 ; // s u b t l y bad

• How can that go wrong? Crash? Corrupt Memory?

Wrong results? Total system compromise?
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• Overwriting stack can be bad, as return address there

• Especially if untrusted user input going into the variable

7



Homework #2 – Background

• It’s mostly about getting everyone up to speed on the Pi

as not everyone has used one before

◦ Many ways to set up your Pi for use, everyone has a

different preference

◦ Be sure to change your password from default

• Also a small C coding assignment, and some short-answer

questions.
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Using the Pi for this Class – Two
Challenges

• Getting Pi to the point you can log in

• Getting files onto and off of the board. (Definitely

needed for homework)
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Installing Linux

• Any Linux fine, I typically use Raspberry Pi OS

(Raspbian)

Using the same that I do is easiest and I can more easily

help

• Easiest way is to buy SD card with image pre-installed

• If starting with a blank SD card:

◦ https://www.raspberrypi.com/software/

has images and even a tool you can use that will help
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you install things.

◦ This includes the ability to pre-configure things like

password, ssh, keyboard, locale, wifi

◦ Warning: it’s a large download (900MB?) and takes a

while to write to SD (which is slow)

• If you end up instead manually writing an image to SD

using command-line linux (the dd tool or similar be sure

to get right partition as the destination. It’s easy to

accidentally overwrite your laptop/desktop’s hard drive
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Booting Linux on Pi

• Why called booting?

• Bootstrapping?

• Pull oneself up by own bootstraps? Meaning to get

something going starting with nothing
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Getting Linux going

• Put SD card in

• Hook up input/output (see later)

• Plug in the USB power adapter; *NOTE* can also draw

power over serial or usb or sometimes HDMI

• Lights should come on and blink and should boot

• If you have a display hooked up A number of raspberries

should appear and some Linux boot messages

• Things can also go wrong in ways hard to troubleshoot
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First Boot

• First boot a menu comes up. This varies depending

on what OS you are on, I’m assuming Raspbian v11

(Bullseye) here

◦ Will prompt for keyboard type. You want standard

US English keyboard, but by default it will give you

UK (Pis are from England). It can be a bit hard to

navigate to what you want

◦ It will ask for username password

In the old days it would just default to pi/raspberry.
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Why was that bad security-wise?

• At this point it might continue until you get to a login

prompt
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More Configuration

• Once logged in you can run “raspi-config” to configure

more things

• System Settings

◦ Enable Wifi

◦ Pick a Hostname

◦ various other things

• Display Options

◦ Only matter if you are using a TV as a display

• Interfaces
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◦ Can enable ssh for remote network logins

◦ Can also enable SPI, i2c, and 1-wire that we’ll use in

class

• Advanced

◦ You might be able to expand the disk image to fill the

whole sd-card, not sure if that’s automatic

◦ Performance: can overclock, select how much RAM

used by GPU

• Localization

◦ Probably already picked keyboard

◦ Can pick language. Probably your best bet is
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en US.UTF-8

◦ Pick timezone: Americas/NY

◦ Can configure Wifi more (what frequencies it can use

depend on what country you are in)
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Other Optional things you can do

• If on network, can install updates

sudo apt-get update

sudo apt-get upgrade
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Connecting to the Pi

• Monitor/Keyboard (Easiest)

• Network Connection

• Serial Connection
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Monitor and Keyboard

• HDMI monitor, USB keyboard, USB mouse (optional

unless using gui)

• Need HDMI cable (micro-HDMI on pi4)

• Used to be a nice setup in the Electronics Lab but I

don’t think that exists anymore unfortunately.
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Network/Ethernet Connection

• Ethernet cable

• Either an Ethernet port, or connect direct to PC

• If something goes wrong on boot hard to fix

• Can also try this with a wireless connector

• Can hook it onto dorm network, but need to request a

static IP. Can also direct connect between PC (configure

pi with a local address like 192.168.1.2 and set your
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wired Ethernet on PC side to something like 192.168.1.1

and then use ssh to connect)
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Serial Connection

• Old fashioned, but very good skill to have.

• Need USB/serial adapter

• Need another machine to hook to, with a comm program

minicom, putty

• Thankfully unlike old days don’t need specific NULL

modem cable. Still might need to set some obscure

COM port settings (BAUD, stop bits, parity) and console

TERM settings (ANSI, VT102).
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Other/obsolete

• In way past times people used “netatalk” on MacOS

I think this doesn’t work anymore

• There are rumors about being able to login using USB-C

on Pi4 but haven’t seen it done
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Transferring Files

• Easiest: if set up like a desktop just download with

browser

• USB-KEY: transfer data using a regular USB-key In

theory the Pi should auto-mount the drive for you

May need to mount / umount by hand or be root

• Network: just use ssh/scp

• Serial: sz/rz ZMODEM

• Putting sd-card (after unpowering!) in another machine.

Challenge: Filesystem is in Linux format (ext4) so
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Windows and Macs can’t read it by default.
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Homework #2 – Unpacking Assignment

• It’s a .tar.gz file. What is that?

• Sort of the Linux equivalent of a zip file

• tar = tape archive (ancient history) that runs lots of files

together

gz = gzip, which compresses it (makes it smaller)

• you may see other (Z, bz2, xz). What are the differences?

Mostly in compressed size vs compress/uncompress

resources

gzip good enough for what we are doing.
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Homework #2 – Editing C on Pi

• Take some existing C code and modify it.

• Can use the editor of your choice. Many on Linux.

◦ “nano” is easy

◦ “vim” if you are serious about Linux.

◦ “emacs” – I’ve known some emacs wizards

◦ Also various graphical ones

◦ Modern (MS VS Studio? Eclipse? Atom?) but can

take more RAM than the Pi has
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What you will do before starting HW2

• Get Linux installed

• Login with the default user/password (on Raspbian it is

pi / raspberry)

You can use adduser to add a new user and/or passwd

to change a password.

• Learning a little bit of Linux. Most importantly compiling

C/asm programs and transferring HW assignments in

and out
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SD Card Digression

• Why are they so slow?

• BACK UP YOUR WORK. ALL THE TIME. SD cards

corrupt easily. Why?

• SHUTDOWN CLEANLY

menu or shutdown -h now

• Try to get things done a little before the deadlines, that

way you have some time to recover if a hardware failure

does happen.
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Using the Pi

• I usually assume you’ll be doing things at the command

line, either at the text console or by starting a terminal

emulator (like lxterm) in the GUI interface
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Homework #2 – Editing C on your own
computer?

• if you want you can even code it up on your

desktop/laptop, but you probably want to copy it over

to test before submitting.

• Be careful not to introduce errors if cutting and pasting
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C compiler

• C compiling on Linux

We will use gcc (what others exist. clang?)

Typical command line is something like:

gcc -O2 -Wall -o hello world hello world.c

-O2 is optimization, -Wall is show all warnings

A lot more options, see man page
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Makefiles

• We use a Makefile to automate the process.

• What is make?

• You give it a list of dependencies, then it automatically

sees what files have changed and then runs commands

to build things

• Feel free to play with it, but a warning, tabs are

significant so weird errors if you use spaces instead.
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Cross compiling

• Can compile for a different architecture, for example x86

to ARM

• Why do it? Faster. Target doesn’t have enough

resources. Want to target multiple devices.

• To test would need an emulator (like qemu)
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Comment your Code!

• Comment your code!!!!!

Why?

I will take points off it you don’t.

Also helps other people looking at your code figure out

what’s going on. Including me the graded. Including

you trying to re-use some code a year from now.

Having your name and a description of what the overall

file and each function does doesn’t hurt.

Even fancier commenting conventions companies will
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have for automated tools.

Mostly comment non-obvious stuff.

So for(i=0;i<10;i++) not so much.

But something like i=4.3+10*j; yes.

You can’t really over-comment (well you can, but it’s

harder to over-comment than under-comment)
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Using git

• Not using gitlab like ECE271, was huge hassle

• Still idea to use some sort of source control management

(SCM)

• There are actually worse than git out there

• Who wrote git? Linus Torvalds.
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Documentation on Linux commands

• Use man command where command is what you are

interested in

• Use man ls to see how to use ls

• Also useful for functions man -a printf or random

stuff man ascii
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HW#2 Something Cool

• ANSI escape color/art – Demoscene!

• In old days: how could you do colors on screen?

• Over serial port, so couldn’t directly write to video card

• Escape sequences: A pattern not normally typed by

accident

• ESCAPE (ASCII 27) followed by [ then some pattern of

characters.

• Can move cursor, change colors, etc.

• Back in the day I used to make a lot of ANSI/ASCII art.
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