
ECE 471 – Embedded Systems
Lecture 7

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

13 September 2023

https://web.eece.maine.edu/~vweaver

Announcements

• Don’t forget HW#2 is due Friday

1

Last Time

• Whirlwind tour of Command Prompt

• Here are a few extra things

• Can use the Command Prompt in a GUI, use Terminal

emulator

• File/device permissions:

◦ Operating system enforces permissions on files, can

see with ls -l

◦ Can belong to users, groups

◦ Can set read/write/execute for user/group/everyone

2

◦ use chmod, chgrp, chown

◦ If you have root/super-user/sysadmin privileges you

can ignore permissions

◦ Use “sudo” but be careful, with great power comes

great responsibility

3

HW#1 – Characteristics of Embedded
System

• embedded inside – sometimes hard to know. Is a raw

pi one? Pi used as desktop? Pi used as retro-pi? Pi

controlling a 3D printer?

Lack of being able to update not necessarily the same

• resource constrained

• dedicated purpose

• lots of I/O

• real-time constraints

4

HW#1 – Other characteristics

• Low-cost?

This is complicated. Something like a desktop might be

optimized for cost extremely, while a one-off embedded

system might not, and in fact might be over-engineered

(like a space probe) because has to operate in tough

conditions.

• Low-power?

again, this can be part of resource constrained but be

sure to explain

5

• Operating system?

Can have an OS and still be considered embedded.

• Real-Time Confusion: we will discuss this more in future,

for example Just turning off the motor, and it takes an

extra 1/2s is not really considered a real time thing. No

one dies, no hardware destroyed, just mild annoyance

if noticed at all. Now if somehow it had to keep the

waveform to H-bridge exact within 1ms or the motor

would overheat and catch on fire, that could be a real-

time issue.

6

HW#1 – Identifying an Embedded System

• Be decisive with your answer, and be specific with your

reasoning

• iPhone

real time doesn’t necessarily mean quick-response, or

FLOPS

updatable not a characteristic

• Toothbrush is actual specs I came across Note low-price

is not a characteristic, often opposite might be true

• Thermostat

7

HW#1 – Bits

• ARM1176 is generally considered 32-bits

• ARMv8 is generally considered 64-bits

• 6502 generally considered 8 bits

• There are people who will have long drawn-out internet

arguments about the bitness of old systems

8

HW#1 – ASIC vs ucontroller

• cost/power. Depends a lot on numbers made, process,

and how well designed it is.

• Could be lower-cost/faster speed, but not necessarily.

Why bother then? Cost?

• Extra hardware overhead? ASIC mostly just flip flops

and gates. SoC internally a lot more, but these days not

much else is needed.

• More secure? Can you reverse engineer an ASIC?

9

C Review

In past years sometimes the reason a HW assignment

didn’t work was due to using C poorly rather than

misunderstandings of the desired algorithm.

10

Loops in C

• for(i=0;i<10;i++) {...}
0, 1, 2, ... 9

• i=0; while(i<10) { ...; i++; }

• i=0; do { ...; i++; } while(i<10);

Always runs at least once

11

printf() in C

• Lots of options, see man page

• How print an integer? printf("%d",i);

• Character? String? floating point?

printf("%c %s %f %x",c,s,f,x);

• More advanced formatting stuff

printf("%0.3f",f);

• Escape characters like percent, newlines and quotes

printf("\t \n \" \%");

12

Common C Pitfalls – Static Memory

• Allocating things like arrays (int a[5])

• C doesn’t prevent you from accessing past the end

• What happens if you do go outside the boundary?

◦ Crash? Memory corruption?

◦ Nothing? (you are lucky and it hits something

unimportant. Is that best or worst case?)

13

Common C Pitfalls – Dynamic Memory

• Often avoided on embedded systems

• Dynamically allocate memory with malloc() and

calloc()

• Should check returned value against NULL.

What happens if you de-reference a NULL pointer?

• Out of bounds memory access same issue as with static

14

Common C Pitfalls – Freeing Memory

• Memory allocated with malloc/calloc needs to be freed

with free()

• What happens if you forget to free memory?

Memory Leak

• Might not be an issue if you allocate something once

and use it all program. More of a problem if you’re

constantly allocating/freeing and miss freeing.

• What happens if you free the same memory twice?

Crash and/or security issue

15

• Note not all memory leaks are critical, as at program

exit the operating system will close files/free memory

16

Debugging Memory Access issues

• The Valgrind utility can help debug these errors

Mostly dynamic, not much can be done about static

• It translates your program on the fly, instruments all

memory allocations, and monitors all loads/stores to see

if they are in bounds

• Valgrind can also help find memory leaks

• Downside: really slow

17

C Pitfalls – Strings

• C strings are just zero-terminated character arrays

cha r s []=” He l l o ” ;

H e l l o \0
• You can end up with all the same problems with memory

accesses, especially running off the end

18

C Pitfalls – C String Library

• There are versions of the string routines that take a

length (strncpy() or strlcpy() instead of strcpy()

but beware those have their own issues

vo i d s t r c p y (cha r ∗ dest , ∗ s r c) {
wh i l e (∗ s r c !=0) {

∗ de s t=∗ s r c ;

∗ de s t++; ∗ s r c++;

}
}

19

C Pitfalls – Braces

• Missing braces

i f (a==0)

b=2;

i f (a==0)

b=2;

c=3;

20

C Pitfalls – equality check

• = vs ==

i f (a=0) do some th i ng impo r t an t () ;

• Never ignore warnings from the compiler!

• Some people will use if (0=a) to force an error

21

C Pitfalls – Type Issues

• C will happily auto-convert types for you

• Also be careful of signed/unsigned issues

22

C Pitfalls – Setting Constants

• Floating point constants can be tricky, setting double

x=9/5; will get you 1, you want 9.5/5.0

• Leading zeros specify Octal (base-8) numbers so

something like int x=010; might give surprising results.

23

Coding Style

• How should you format your code?

• Does C have rules? Not really.

• International Obfuscated C Code Competition (IOCCC)

• Your company or open-source project might have strict

rules

• In this class as long as your code is relatively easy to

follow I am fine with it

24

Coding Style – Tabs vs Spaces

• Indent code with a tab character?

Or 8 spaces (traditional size of a tab)? Or some other

amount of spaces?

• How long should lines be? Traditionally was 80 columns

(historical size of screens)

• Other spacing, like if (x == 5) how many of those

spaces should be there?

25

Coding Style – Curly Braces

• int function() {?
• Or should it be next line?

• Should int be on its own line too?

26

Coding Style – Variable Names

• count active users()

• CountActiveUsers() (camel-case)

• szName (Hungarian notation, include type info in name)

27

Coding Style – Linux kernel stuff

• Use of typedefs to make types shorter? vpt a vs struct

virtual pointer *a

• Having only one exit to a function (using goto)

• Restricting the size functions can get

• The indent program can reformat your code to match

the “proper” style for a project

28

Debugging – when things go wrong

• Use a debugger like gdb

◦ Compile your code with -g for debug symbols

◦ Run gdb ./hello

◦ bt backtrace, info regis gives register, disassem

disassembles, etc.

• Sprinkle printf calls

29

