ECE 471 — Embedded Systems
Lecture 8

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

15 September 2023

https://web.eece.maine.edu/~vweaver

Announcements

o HW+#2 was due

e HW#3 will be posted

Stuff from Last Time

e [o shutdown pi, sudo shutdown -h now

e The systemd people changed the command line
arguments at some point which i1s why | have trouble
rememerbing

e By default it waits a minute and prints a message to
everyone's screen (using the wall utility), more useful
back in the day when you might have a bunch of people
logged Iinto a system

Coding Style

e How should you format your code?

e Does C have rules? Not really.

e International Obfuscated C Code Competition (I0CCC)
https://www.ioccc.org/

e Your company or open-source project might have strict
rules

e In this class as long as your code is relatively easy to
follow | am fine with it

https://www.ioccc.org/

Coding Style — Tabs vs Spaces

e Indent code with a tab character?
Or 8 spaces (traditional size of a tab)? Or some other
amount of spaces?

e How long should lines be? Traditionally was 80 columns
(historical size of screens)

e Other spacing, like if (x == 5) how many of those
spaces should be there?

Coding Style — Curly Braces

e int function() {7
e Or should it be next line?
e Should int be on its own line too?

Coding Style — Variable Names

e Function Naming Styles
o count_active_users()
o CountActiveUsers() (camel-case)
e Variable Naming Styles
o int 1;
o int IndexForTheFirstForLoop;
o u32iLoopIndex (Hungarian notation, include type
info in name)

indent tool

e The indent program can reformat your code to match
the “proper” style for a project

Coding Style — Linux kernel stuff

e Use of typedefs to make types shorter? vpt_a vs struct
virtual_pointer *a

e Having only one exit to a function (using goto)

e Restricting the size functions can get

How Executables are Made

e Compiler generates ASM (Cross-compiler)
e Assembler generates machine language objects

e Linker creates Executable (out of objects)

Tools — Compiler

e takes code, usually (but not always) generates assembly

e Compiler can have front-end which generates
intermediate language, which is then optimized, and
back-end generates assembly

e Can be quite complex

e Examples: gcc, clang

e \What language is a compiler written in? Who wrote the
first one?

hompson's Reflections on Trusting Trust

/Y 10

Tools — Assembler

e Takes assembly language and generates machine
language

e creates object files

e Relatively easy to write (mostly string parsing and bit-
manipulation)

e Examples: GNU Assembler (gas), tasm, nasm, masm,
etc.

/Y 11

Tools — Linker

e Creates executable files from object files
e Resolves addresses of symbols.

e Links to symbols in libraries.

e Examples: Id, gold (hard to write)

12

ELF Executable Format

e Binary contains your code

e Also contains initialized data

e Also a bunch of headers to tell the OS how to run things
e \We'll discuss this more later

-y 13

Application Binary Interface (ABI)

e The rules an executable needs to follow in order to talk
to other code/libraries on the system

e A software agreement, this is not enforced at all by
hardware

-y 14

ARM32 Linux C/userspace ABI

e r0-r3 are first 4 arguments/scratch (extra go on stack)
(caller saved)

e rO-rl are return value

e r4-r11 are general purpose, callee saved

e r12-r15 are special (stack, LR, PC)

e [hings are more complex than this. Passing arrays and
structs? 64-bit values? Floating point values? etc.

-y 15

Kernel Programming ABIs

e OABI — “old" original ABI (arm). Being phased out.
slightly different syscall mechanism, different alignment

restrictions

e EABI — new “embedded” ABI (armel)

e hard float — EABI compiled with ARMv7 and VFP
(vector floating point) support (armhf). Raspberry Pi
(raspbian) is compiled for ARMv6 armhf.

/Y 16

Linux System Calls (EABI/armhf)

e System call number in r7

e Arguments in r0 - r6

e Return value in rO (-1 if error, errno in -4096 - 0)
e Call swi 0x0

e System call numbers can be found in
/usr/include/arm-linux-gnueabihf/asm/unistd.h
They are similar to the 32-bit x86 ones.

-y 17

How was OABI different

e The previous implementation had the same system call

numbers, but instead of r7 the number was the argument
to swi.

e [his was very slow, as there is no way to determine that
value without having the kernel backtrace the callstack
and disassemble the instruction.

-y 18

Manpage

The easlest place to get system call documentation.

man open 2

Finds the documentation for “open”. The 2 means look
for system call documentation (which is type 2).

ARM ISAs

e ARM32

e Thumb
e Thumb2 (as seen on ECE271 ARM Cortex-M)

e AARCH64

/Y 20

A first ARM assembly program: hello_exit

.equ SYSCALL_EXIT, 1

_start:
#================================
Exit
#================================

exit:
mov r0 ,#5
mov r7 ,#SYSCALL_EXIT @ put exit syscall number (1) in r7
swi 0x0 @ and exit

Some GNU assembler notes

e Code comments
o @ is the traditional comment character
o # can be used on line by itself but will confuse
assembler if on line with code.
o Can also use /* */ and //
o *Cannot* use :
e Order is source, destination
e Constant value indicated by # or $
e .equ is equivalent to a C #define

/Y 22

hello_exit example

Assembling /Linking using make, running, and checking the
output.

lecture6$ make hello _exit_arm
as -0 hello_exit_arm.o hello_exit_arm.s
1ld -0 hello_exit_arm hello_exit_arm.o

lecture6$./hello _exit_arm
lecture6$ echo $7
5

/Y 23

Let’s look at our executable

e 1s -1la ./hello_exit_arm
Check the size

e readelf -a ./hello_exit_arm
Look at the ELF executable layout

e objdump --disassemble-all ./hello_exit_arm
See the machine code we generated

e strace ./hello_exit_arm
Trace the system calls as they happen.

24

ew ssctear, he]]lo_world example

.equ SYSCALL_WRITE,
.equ STDOUT, 1

.globl _start

_start:
mov r0 ,#STDOUT /* stdout x*/
ldr rl,=hello
mov r2 ,#13 @ length
mov r7 ,#SYSCALL_WRITE
swi 0x0
Exit
exit:
mov r0 ,#5
mov r7 ,#SYSCALL_EXIT @ put exit syscall number in r7
swi 0x0 @ and exit
.data
hello: .ascii "Hello_ World!'\n"

New things to note in hello_world

e [he fixed-length 32-bit ARM cannot hold a full 32-bit
Immediate

e [herefore a 32-bit address cannot be loaded in a single
Instruction

e In this case the “=" Is used to request the address

e stored in a “literal” pool which can be reached by

P(C-offset, with an extra layer of indirection.

e Data can be declared with .ascii, .word, .byte

e BSS can be declared with .[comm

/Y 26

Using gdb with hello_world

e Run gdb ./hello_world

e Type run to run program, will exit normally
e Can set breakpoint break exit

e Can single-step

e Can info regis to see registers

e Cam disassem to see disassembly

27

loop:

simple loop example

for(i=0;i<10;i++) do_something();

mov r0,#0 # set loop index to zero
push {r0} # save r0 on stack
bl do_something # branch to subroutine, saving
return address 1in link register
pop {r0} # restore r0 from stack
add rO,r0,#1 # increment loop counter
cmp r0,#10 # have we reached 10 yet?
bne loop # if not, loop

28

string count example

Count the number of chars in a string until we hit a space.

ldr rl,=hello # load pointer to hello string into ri
mov r2 ,#0 # 1nitialize count to zero
loop:
ldrb r0,[r1] # load byte pointed by rl into rO0
cmp r0,#7 .’ # compare r0O to space character
this updates the status flags
beq done # if it was equal, we are done
add r2,r2,#1 # increment our count
add rli,rl ,#1 # increment our pointer
b loop # branch (unconditionally) to loop
done:

/Y 29

