
ECE 471 – Embedded Systems
Lecture 8

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

15 September 2023

https://web.eece.maine.edu/~vweaver

Announcements

• HW#2 was due

• HW#3 will be posted

1

Stuff from Last Time

• To shutdown pi, sudo shutdown -h now

• The systemd people changed the command line

arguments at some point which is why I have trouble

rememerbing

• By default it waits a minute and prints a message to

everyone’s screen (using the wall utility), more useful

back in the day when you might have a bunch of people

logged into a system

2

Coding Style

• How should you format your code?

• Does C have rules? Not really.

• International Obfuscated C Code Competition (IOCCC)

https://www.ioccc.org/

• Your company or open-source project might have strict

rules

• In this class as long as your code is relatively easy to

follow I am fine with it

3

https://www.ioccc.org/

Coding Style – Tabs vs Spaces

• Indent code with a tab character?

Or 8 spaces (traditional size of a tab)? Or some other

amount of spaces?

• How long should lines be? Traditionally was 80 columns

(historical size of screens)

• Other spacing, like if (x == 5) how many of those

spaces should be there?

4

Coding Style – Curly Braces

• int function() {?
• Or should it be next line?

• Should int be on its own line too?

5

Coding Style – Variable Names

• Function Naming Styles

◦ count active users()

◦ CountActiveUsers() (camel-case)

• Variable Naming Styles

◦ int i;

◦ int IndexForTheFirstForLoop;

◦ u32iLoopIndex (Hungarian notation, include type

info in name)

6

indent tool

• The indent program can reformat your code to match

the “proper” style for a project

7

Coding Style – Linux kernel stuff

• Use of typedefs to make types shorter? vpt a vs struct

virtual pointer *a

• Having only one exit to a function (using goto)

• Restricting the size functions can get

8

How Executables are Made

• Compiler generates ASM (Cross-compiler)

• Assembler generates machine language objects

• Linker creates Executable (out of objects)

9

Tools – Compiler

• takes code, usually (but not always) generates assembly

• Compiler can have front-end which generates

intermediate language, which is then optimized, and

back-end generates assembly

• Can be quite complex

• Examples: gcc, clang

• What language is a compiler written in? Who wrote the

first one?

Thompson’s Reflections on Trusting Trust

10

Tools – Assembler

• Takes assembly language and generates machine

language

• creates object files

• Relatively easy to write (mostly string parsing and bit-

manipulation)

• Examples: GNU Assembler (gas), tasm, nasm, masm,

etc.

11

Tools – Linker

• Creates executable files from object files

• Resolves addresses of symbols.

• Links to symbols in libraries.

• Examples: ld, gold (hard to write)

12

ELF Executable Format

• Binary contains your code

• Also contains initialized data

• Also a bunch of headers to tell the OS how to run things

• We’ll discuss this more later

13

Application Binary Interface (ABI)

• The rules an executable needs to follow in order to talk

to other code/libraries on the system

• A software agreement, this is not enforced at all by

hardware

14

ARM32 Linux C/userspace ABI

• r0-r3 are first 4 arguments/scratch (extra go on stack)

(caller saved)

• r0-r1 are return value

• r4-r11 are general purpose, callee saved

• r12-r15 are special (stack, LR, PC)

• Things are more complex than this. Passing arrays and

structs? 64-bit values? Floating point values? etc.

15

Kernel Programming ABIs

• OABI – “old” original ABI (arm). Being phased out.

slightly different syscall mechanism, different alignment

restrictions

• EABI – new “embedded” ABI (armel)

• hard float – EABI compiled with ARMv7 and VFP

(vector floating point) support (armhf). Raspberry Pi

(raspbian) is compiled for ARMv6 armhf.

16

Linux System Calls (EABI/armhf)

• System call number in r7

• Arguments in r0 - r6

• Return value in r0 (-1 if error, errno in -4096 - 0)

• Call swi 0x0

• System call numbers can be found in

/usr/include/arm-linux-gnueabihf/asm/unistd.h

They are similar to the 32-bit x86 ones.

17

How was OABI different

• The previous implementation had the same system call

numbers, but instead of r7 the number was the argument

to swi.

• This was very slow, as there is no way to determine that

value without having the kernel backtrace the callstack

and disassemble the instruction.

18

Manpage

The easiest place to get system call documentation.

man open 2

Finds the documentation for “open”. The 2 means look

for system call documentation (which is type 2).

19

ARM ISAs

• ARM32

• Thumb

• Thumb2 (as seen on ECE271 ARM Cortex-M)

• AARCH64

20

A first ARM assembly program: hello exit

.equ SYSCALL_EXIT , 1

.globl _start

_start:

#================================

Exit

#================================

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number (1) in r7

swi 0x0 @ and exit

21

Some GNU assembler notes

• Code comments

◦ @ is the traditional comment character

◦ # can be used on line by itself but will confuse

assembler if on line with code.

◦ Can also use /* */ and //

◦ *Cannot* use ;

• Order is source, destination

• Constant value indicated by # or $
• .equ is equivalent to a C #define

22

hello exit example

Assembling/Linking using make, running, and checking the

output.

lecture6$ make hello_exit_arm

as -o hello_exit_arm.o hello_exit_arm.s

ld -o hello_exit_arm hello_exit_arm.o

lecture6$./hello_exit_arm

lecture6$ echo $?

5

23

Let’s look at our executable

• ls -la ./hello exit arm

Check the size

• readelf -a ./hello exit arm

Look at the ELF executable layout

• objdump --disassemble-all ./hello exit arm

See the machine code we generated

• strace ./hello exit arm

Trace the system calls as they happen.

24

hello world example.equ SYSCALL_EXIT , 1

.equ SYSCALL_WRITE , 4

.equ STDOUT , 1

.globl _start

_start:

mov r0 ,# STDOUT /* stdout */

ldr r1 ,= hello

mov r2 ,#13 @ length

mov r7 ,# SYSCALL_WRITE

swi 0x0

Exit

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number in r7

swi 0x0 @ and exit

.data

hello: .ascii "Hello␣World !\n"

25

New things to note in hello world

• The fixed-length 32-bit ARM cannot hold a full 32-bit

immediate

• Therefore a 32-bit address cannot be loaded in a single

instruction

• In this case the “=” is used to request the address

be stored in a “literal” pool which can be reached by

PC-offset, with an extra layer of indirection.

• Data can be declared with .ascii, .word, .byte

• BSS can be declared with .lcomm

26

Using gdb with hello world

• Run gdb ./hello world

• Type run to run program, will exit normally

• Can set breakpoint break exit

• Can single-step

• Can info regis to see registers

• Cam disassem to see disassembly

27

simple loop example

for(i=0;i<10;i++) do_something ();

mov r0 ,#0 # set loop index to zero

loop:

push {r0} # save r0 on stack

bl do_something # branch to subroutine , saving

return address in link register

pop {r0} # restore r0 from stack

add r0 ,r0 ,#1 # increment loop counter

cmp r0 ,#10 # have we reached 10 yet?

bne loop # if not , loop

28

string count example

Count the number of chars in a string until we hit a space.
ldr r1 ,= hello # load pointer to hello string into r1

mov r2 ,#0 # initialize count to zero

loop:

ldrb r0 ,[r1] # load byte pointed by r1 into r0

cmp r0 ,#’␣’ # compare r0 to space character

this updates the status flags

beq done # if it was equal , we are done

add r2 ,r2 ,#1 # increment our count

add r1 ,r1 ,#1 # increment our pointer

b loop # branch (unconditionally) to loop

done:

29

