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Announcements

• HW#2 was due

• HW#3 will be posted
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Stuff from Last Time

• To shutdown pi, sudo shutdown -h now

• The systemd people changed the command line

arguments at some point which is why I have trouble

rememerbing

• By default it waits a minute and prints a message to

everyone’s screen (using the wall utility), more useful

back in the day when you might have a bunch of people

logged into a system
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Coding Style

• How should you format your code?

• Does C have rules? Not really.

• International Obfuscated C Code Competition (IOCCC)

https://www.ioccc.org/

• Your company or open-source project might have strict

rules

• In this class as long as your code is relatively easy to

follow I am fine with it
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Coding Style – Tabs vs Spaces

• Indent code with a tab character?

Or 8 spaces (traditional size of a tab)? Or some other

amount of spaces?

• How long should lines be? Traditionally was 80 columns

(historical size of screens)

• Other spacing, like if ( x == 5 ) how many of those

spaces should be there?
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Coding Style – Curly Braces

• int function() {?
• Or should it be next line?

• Should int be on its own line too?
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Coding Style – Variable Names

• Function Naming Styles

◦ count active users()

◦ CountActiveUsers() (camel-case)

• Variable Naming Styles

◦ int i;

◦ int IndexForTheFirstForLoop;

◦ u32iLoopIndex (Hungarian notation, include type

info in name)
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indent tool

• The indent program can reformat your code to match

the “proper” style for a project
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Coding Style – Linux kernel stuff

• Use of typedefs to make types shorter? vpt a vs struct

virtual pointer *a

• Having only one exit to a function (using goto)

• Restricting the size functions can get
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How Executables are Made

• Compiler generates ASM (Cross-compiler)

• Assembler generates machine language objects

• Linker creates Executable (out of objects)
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Tools – Compiler

• takes code, usually (but not always) generates assembly

• Compiler can have front-end which generates

intermediate language, which is then optimized, and

back-end generates assembly

• Can be quite complex

• Examples: gcc, clang

• What language is a compiler written in? Who wrote the

first one?

Thompson’s Reflections on Trusting Trust
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Tools – Assembler

• Takes assembly language and generates machine

language

• creates object files

• Relatively easy to write (mostly string parsing and bit-

manipulation)

• Examples: GNU Assembler (gas), tasm, nasm, masm,

etc.
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Tools – Linker

• Creates executable files from object files

• Resolves addresses of symbols.

• Links to symbols in libraries.

• Examples: ld, gold (hard to write)
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ELF Executable Format

• Binary contains your code

• Also contains initialized data

• Also a bunch of headers to tell the OS how to run things

• We’ll discuss this more later
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Application Binary Interface (ABI)

• The rules an executable needs to follow in order to talk

to other code/libraries on the system

• A software agreement, this is not enforced at all by

hardware
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ARM32 Linux C/userspace ABI

• r0-r3 are first 4 arguments/scratch (extra go on stack)

(caller saved)

• r0-r1 are return value

• r4-r11 are general purpose, callee saved

• r12-r15 are special (stack, LR, PC)

• Things are more complex than this. Passing arrays and

structs? 64-bit values? Floating point values? etc.
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Kernel Programming ABIs

• OABI – “old” original ABI (arm). Being phased out.

slightly different syscall mechanism, different alignment

restrictions

• EABI – new “embedded” ABI (armel)

• hard float – EABI compiled with ARMv7 and VFP

(vector floating point) support (armhf). Raspberry Pi

(raspbian) is compiled for ARMv6 armhf.
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Linux System Calls (EABI/armhf)

• System call number in r7

• Arguments in r0 - r6

• Return value in r0 (-1 if error, errno in -4096 - 0)

• Call swi 0x0

• System call numbers can be found in

/usr/include/arm-linux-gnueabihf/asm/unistd.h

They are similar to the 32-bit x86 ones.
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How was OABI different

• The previous implementation had the same system call

numbers, but instead of r7 the number was the argument

to swi.

• This was very slow, as there is no way to determine that

value without having the kernel backtrace the callstack

and disassemble the instruction.
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Manpage

The easiest place to get system call documentation.

man open 2

Finds the documentation for “open”. The 2 means look

for system call documentation (which is type 2).
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ARM ISAs

• ARM32

• Thumb

• Thumb2 (as seen on ECE271 ARM Cortex-M)

• AARCH64
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A first ARM assembly program: hello exit

.equ SYSCALL_EXIT , 1

.globl _start

_start:

#================================

# Exit

#================================

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number (1) in r7

swi 0x0 @ and exit
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Some GNU assembler notes

• Code comments

◦ @ is the traditional comment character

◦ # can be used on line by itself but will confuse

assembler if on line with code.

◦ Can also use /* */ and //

◦ *Cannot* use ;

• Order is source, destination

• Constant value indicated by # or $
• .equ is equivalent to a C #define
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hello exit example

Assembling/Linking using make, running, and checking the

output.

lecture6$ make hello_exit_arm

as -o hello_exit_arm.o hello_exit_arm.s

ld -o hello_exit_arm hello_exit_arm.o

lecture6$ ./hello_exit_arm

lecture6$ echo $?

5
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Let’s look at our executable

• ls -la ./hello exit arm

Check the size

• readelf -a ./hello exit arm

Look at the ELF executable layout

• objdump --disassemble-all ./hello exit arm

See the machine code we generated

• strace ./hello exit arm

Trace the system calls as they happen.
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hello world example.equ SYSCALL_EXIT , 1

.equ SYSCALL_WRITE , 4

.equ STDOUT , 1

.globl _start

_start:

mov r0 ,# STDOUT /* stdout */

ldr r1 ,= hello

mov r2 ,#13 @ length

mov r7 ,# SYSCALL_WRITE

swi 0x0

# Exit

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number in r7

swi 0x0 @ and exit

.data

hello: .ascii "Hello␣World !\n"
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New things to note in hello world

• The fixed-length 32-bit ARM cannot hold a full 32-bit

immediate

• Therefore a 32-bit address cannot be loaded in a single

instruction

• In this case the “=” is used to request the address

be stored in a “literal” pool which can be reached by

PC-offset, with an extra layer of indirection.

• Data can be declared with .ascii, .word, .byte

• BSS can be declared with .lcomm
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Using gdb with hello world

• Run gdb ./hello world

• Type run to run program, will exit normally

• Can set breakpoint break exit

• Can single-step

• Can info regis to see registers

• Cam disassem to see disassembly
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simple loop example

# for(i=0;i<10;i++) do_something ();

mov r0 ,#0 # set loop index to zero

loop:

push {r0} # save r0 on stack

bl do_something # branch to subroutine , saving

# return address in link register

pop {r0} # restore r0 from stack

add r0 ,r0 ,#1 # increment loop counter

cmp r0 ,#10 # have we reached 10 yet?

bne loop # if not , loop
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string count example

Count the number of chars in a string until we hit a space.
ldr r1 ,= hello # load pointer to hello string into r1

mov r2 ,#0 # initialize count to zero

loop:

ldrb r0 ,[r1] # load byte pointed by r1 into r0

cmp r0 ,#’␣’ # compare r0 to space character

# this updates the status flags

beq done # if it was equal , we are done

add r2 ,r2 ,#1 # increment our count

add r1 ,r1 ,#1 # increment our pointer

b loop # branch (unconditionally) to loop

done:
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