ECE 471 — Embedded Systems
Lecture 11

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

22 September 2023

https://web.eece.maine.edu/~vweaver

Announcements

e HW=4 will be posted

e Will require an LED, a breadboard, some resistors and
some jumper wires.

|l provide jumper wires

f you need breadboard I'll try to track some down

e Remember to comment your code!

e Also be sure your code doesn't crash!
Forgot to say this last time but a lot of command-line
argument code in last homework crashed if you didn't

-y .

have at least one argument.

Brief Overview of the Raspberry Pi Board

Model 1B~ 1B+/2B/3B/3B+ Model 4B

Pin1 Pin2

P

Rasp-pi Header

e Model 1B has 17 GPIOs (out of 26 pins)
1B+ /2B/3B/4B has 26 (out of 40)

e 3.3V signaling logic. Need level shifter if want 5V or
1.8V

e Linux by default configures some for other purposes
(serial, i2c, SPI)

Rasp-pi Header

e 1| o
GPIO2 (SDA) | 3 | 4
GPIO3 (SCL) | 5 | 6
GP104 (1-wire) | 7 | 8 | GPIO14 (UART_TXD)
|GENDT 9 | 10 | GPIO15 (UART_RXD)
GPIO17 | 11 | 12 | GPIO18 (PCM_CLK)
GPIO27 | 13 | 14
GP1022 | 15 | 16 | GPI023
18 | GPIO24
20
22
24
26
ID_SD (EEPROM) | 27 | 28 | ID_SC (EEPROM)
GPI05 | 20 | 30 | NGNDS
GPIO6 | 31 | 32 | GPIO12
GPIO13 | 33 | 34 (NGNDINEEEE
GPIO19 | 35 | 36 | GPIO16
GP1026 | 37 | 38 | GPI020
GNP 39 | 40 | cPio

Review: How to enable GPIO on STM32L

A lot of read/modify/write instructions to read current

register values and then to shift/mask to write out updated
bitfields.

e Enable GPIO Clock

e Set output mode for GPIO.
e Set GPIO type.

e Set pin clock speed.

e Set pin pull-up/pull-down
e Set or clear GPIO pin.

-y 6

“Bare Metal” on BCM2835 (Rasp-pi)

e Documented in BCM2835 ARM Peripherals Manual
e 53 GPIOs (not all available on board)
e Can use Wiring-Pi or libbcm2835 if you need speed

e Similar to how done on STM32L... but we have an
operating system

Letting the OS handle it for you

“Old” Linux sysfs GPIO interface

e See the Appendix to these notes for details
e Deprecated with Linux 4.8 in October 2016
e Still there; supposedly to be removed in 2020
e Benefits
o Could call from shell script
e Downsides
o String based, had to remember to convert from ASCI|
o If crash/forget to close, GPIO left active
o Multiple processes at same time, conflict

-y 9

o Some things (like open-drain) couldn’t be set
o Slow, especially if writing multiple (lots of syscalls)

10

“New’” Linux GPIO interface

e Introduced with Linux 4.8 (October 2016)
e New way uses loctls and structs
o Faster
o Automatically releases GPIO when program ends
Note: this can confuse, if you turn an LED on but
immediately exit, might look like not working
o Can set parameters (i.e. pull-up/down) couldn’t before

-y 11

GPIOD utils

e If you have gpiod utilities installed you can get info
e If not installed, if on network you can sudo apt-get

install gpiod
e gpiodetect

gpiochipO [pinctrl-bcm2835] (54 lines)
gpiochipl [raspberrypi-exp-gpio] (8 lines)
e gpioinfo

gpiochipO - 54 lines:
line O: unnamed unused input active-high
line 1: unnamed unused input active-high

There i1s a library

e Some Linux interfaces (perf, ALSA,) assume library
e libgpiod library
e We will avoid it
o embedded systems: may not be room for a library
o sometimes good to code directly to operating system

/Y 13

A few low-level Linux Coding Instructions

e These routines are C bindings for the low-level 1/0O
syscalls used by the Linux kernel

e Linux, “everything is a file"

e Operate on file descriptors, just integer value that the
kernel uses to track open files internally

e You might remember your program starts with three of
these 0 (stdin), 1 (stdout), and 2 (stderr)

-y 14

Opening a File

e fd=open("/path/to/file" ,0_RDWR) ;

e Note can have many many options 0_RDONLY and others
can be or-ed on 0_TRUNC, etc.

e Also optional third argument with permissions

e CHECK FOR ERRORS! For open, -1 is an error
(remember 0 can be a valid fd value)
If error happens, can check the errno value to see
what kind (e.g. EINVAL) and can use perror() or
printf ("%s",strerror(errno)); to get value

-y 15

Closing a File

e close()
e What happens if you forget to close before exiting
program?
No problem, OS will clean up when existing
e What happens if you forget to close in long-running
program?
Can have a file descriptor leak, will run out eventually
e Do you need to check the return value for errors?

/Y 16

Reading /Writing a File

e read(int fd, char *buffer, int count)
Read count bytes from file fd into pointed-to buffer

e write(int fd, char *buffer, int count)
Write count bytes from buffer into file fd

e Return value is either -1 on error or else number of bytes
successfully read /written

-y 17

Out of band access

e ioctl()
e Takes filedescriptor, an [OCTL number defined in the
kernel somewhere, and usually a pointer of some sort

/Y 18

Other syscalls

e There are a huge number, too many to get into here

e Some are useful when manipulating files (11seek())

e Others just use file descriptors because why not
perf_event_open()

-y 19

What about fopen()?

e You might have used the FILE *, fopen(), fwrite(),
fclose()

e These are buffered. Instead of writing direcly to OS the
C library buffers a number of writes together and writes
all data at once when hit threshold

e Usually good for performance (less syscalls), bad if you
want to write out data RIGHT NOW like on embedded
systems

e Underneath, these routines call into open /read /write/close

-y 20

anyway

gpio — Opening Device
#include "linux/gpio.h"
int fd,rv;
/* open first gpio device read/write, check for error x/

fd=open("/dev/gpiochip0",0_RDWR);
if (£d<0) printf("Error opening %s\n",strerror(errno));

22

//
//
//
//
//
//

//
//

//
//
//
//
//
//
//
//

gpio — configure request structure

struct gpiohandle_request {
__u32 lineoffsets [GPIOHANDLES_MAX];
__u32 flags,;
__u8 default_values [GPIOHANDLES_MAX];
char consumer_label [32];
__u32 1lines;int fd;}

configuration values we can or together
BIAS values added later

#define
#define
#define
#define
#define
#define
#define
#define

GPIOHANDLE_REQUEST_INPUT (1UL << 0)
GPIOHANDLE_REQUEST_QOUTPUT (1UL << 1)
GPIOHANDLE_REQUEST_ACTIVE_LOW (1UL << 2)
GPIOHANDLE_REQUEST_OPEN_DRAIN (1UL << 3)
GPIOHANDLE_REQUEST_OPEN_SOURCE (1UL << 4)
GPIOHANDLE_REQUEST_BIAS_PULL_UP (1UL << 5)
GPIOHANDLE_REQUEST_BIAS_PULL_DOWN (1UL << 6)
GPIOHANDLE_REQUEST_BIAS_DISABLE (1UL << 7)

23

gpio — actually do request

struct gpiohandle_request req;

/* clear out struct */
memset (&req,0,sizeof (struct gpiohandle_request));

req.flags = GPIOHANDLE_REQUEST_OQOUTPUT; // want it to be output

req.lines =1; // can group multiple lines together
req.lineoffsets [0] =17; // gpio number we want
req.default_values [0]=0; // default value

strcpy(req.consumer_label, "ECE471"); // helpful label
/* get a handle for our requested config */
rv = ioctl(fd, GPIO_GET_LINEHANDLE_IOCTL, &req);

if (rv<0) printf("Error ioctl %s\n",strerror(errno));

// req.fd is now a handle for this gpio setup

24

//
//

gpio — write/change value of gpiol7

struct gpiohandle_data {
__u8 values [GPIOHANDLES_MAX]; }

struct gpiohandle_data data;

/* set output to 0 x/
data.values [0]=0;

/* send this data struct to the handle for gpiol7 we created */
rv=ioctl(req.fd,GPIOHANDLE_SET_LINE_VALUES_IOCTL ,&data);
if (rv<0) printf("Error setting value %s\n",strerror(errno));

/* set output to 1 x/
data.values [0]=1;

/* send this data struct to the handle for gpiol7 we created */
rv=ioctl(req.fd,GPIOHANDLE_SET_LINE_VALUES_IOCTL ,&data);
if (rv<0) printf("Error setting value %s\n",strerror(errno));

25

gpio — read current value of gpiol7

struct gpiohandle_data data;

/* clear out our data */
memset (&data, 0, sizeof (data));

/* read current value into data struct */
rv = ioctl(req.fd, GPIOHANDLE_GET_LINE_VALUES_IOCTL, &data);
if (rv<0) printf("Error! %s\n",strerror(errno));

/* print the result */
printf ("%d\n",data[0]);

26

gpio — (optional) getting interface info

#include "linux/gpio.h"

//
//
//
//

struct gpiochip_info {
char name [32];
char label [32];
__u32 lines; }

struct gpiochip_info chip_info;

/* ask for chipinfo from open file descriptor, put in chip_info struct */
rv=ioctl (fd,GPIO_GET_CHIPINFO_IOCTL ,&chip_info);
if (rv<0) printf("Error ioctl %s\n",strerror(errno));

/* print summary of what was returned */
printf ("Found %s, %s, %d lines\n",
chip_info.name,chip_info.label,chip_info.lines);

27

gpio — (optional) get info about line gpiol7

// struct gpioline_info {

// __u32 line_offset;
// __u32 flags;

// char name [32];

// char consumer [32]; 7}

struct gpioline_info line_info;

/* clear struct to O before using it */
/* kernel might not like uninitialized values x*/
memset (&line_info ,0,sizeof (line_info));

/* get line info for gpiol7 x*/
line_info.line_offset=17; // set GPIO17

rv=ioctl (fd,GPIO_GET_LINEINFO_IOCTL ,&4line_info);

if (rv<0) printf("Error ioctl Y%s\n",strerror (errno));

/* print summary of what we learned */

printf ("Offset %d, flags %x, name %s, consumer %s\n",line_info.line_offset,
line_info.flags, line_info.name, line_info.consumer);

/Y 28

Delay in Linux

e Can we Busy delay (like in ECE271)7
for(i=0;i<1000000;i++);
Harder to do in C. Why?
Compiler optimizes away.

e usleep() puts process to sleep for a number of
microseconds. But can have issues if want exact delay.
Why? OS potentially context switches every 100m:s.

e Other ways to implement: Set up PWM? Timers?

/Y 29

Waiting for Input

e Busy loop. Bad, burns CPU / power
e usleep() in loop. Can delay response time.

e Interrupt when ready! poll()

30

gpio input using interrupts / poll()

NOTE: You don't need to do this for the homework, this
IS just here in case you are curious how to do it.

// struct gpioevent_request {

// __u32 lineoffset;

// __u32 handleflags;

// __u32 eventflags;

// char consumer_label [32];
// int fd; }

// struct gpioevent_data {
// __ub64 timestamp;
// __u32 id; }

struct gpioevent_request ereq;
struct gpioevent_data edata;
struct pollfd pfd;

ssize_t rd;

-y 31

/* do this instead of request_line x*/

memset (&ereq,0,sizeof (struct gpioevent_request));
req.lineoffset=17;

req.handleflags = GPIOHANDLE_REQUEST_INPUT;
req.eventflags = GPIOEVENT_REQUEST_BOTH_EDGES;

rv = ioctl(fd, GPIO_GET_LINEEVENT_IOCTL, &req);

pfd.fd = ereq.fd;
pfd.events = POLLIN | POLLPRI;

rv = poll (&pfd, 1, 1000); // 1000 = timeout 1s
if (rv >0) {
rd = read(req.fd, &event, sizeof (event));

printf ("Timestamp: 7%11d id %d\n",
edata.timestamp,edata.id);

Requirements!

e Comment your code!

e Check for errors, print message and exit() if error.

33

GPIO18

470 Ohm

Circuit
3.3V

_

GPIO17

i

34

Circuit Discussion

e Pull-up / Pull-down resistor. Why?

e Why the extra 1k resistor? (avoid short if set to output
by accident)

-y 35

Debouncing! Noisy Switches

e Noisy switches, have to debounce

Ideal Switch Press

oooo011111 11

volts

time

0000 O0°1 W1

volts

VA A time
Actual Switch Press

36

Debouncing!

e Can you fix in hardware? Capacitors?
e Can you fix in software? No built-in debounce like on
STM32L
e Algorithms
o Wait until you get X consecutive values before
changing
o Get new value, wait short time and check again

-y 37

Permissions!

e Unless your user is configured to have gpio permissions
you'll have to run as root or use sudo.

e raspbian there's a “gpio’ group which has permissions
sudo addgroup vince gpio

e What should your code do if permission is denied?
Not crash, ideally.

/Y 38

Bypassing Linux for speed

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/

Trying to generate fastest GPIO square wave.

shell gpio util 40Hz
shell sysfs 2.8kHz
Python WiringPi 28kHz
Python RPi.GPIO 70kHz
C sysfs (vmw) 400kHz
C WiringPi 4.6MHz
C libbcm2835 5.4MHz

C Rpi Foundation “Native” | 22MHz

/Y 39

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/

Appendix: Linux userspace sysfs interface

THIS IS INCLUDED FOR HISTORICAL PURPOSES

-y 40

Linux GPIO interface

e Documentation/gpio/sysfs.txt

e sysfs and string based

41

A few low-level Linux Coding Instructions

-y 42

Enable a GPIO for use

To enable GPIO 17:

write “17" to /sys/class/gpio/export
To disable GPIO 17:

write “17" to /sys/class/gpio/unexport

char buffer [10];
fd=open("/sys/class/gpio/export",0_WRONLY) ;

if (£d<0) fprintf (stderr,"\tError enabling\n");
strcpy (buffer,"17");

write (fd,buffer,2);

close(fd);

43

Set GPIO Direction

To make GPIO 17 an input:

write “Iin” to /sys/class/gpio/gpiol7/direction
To make GPIO 17 an output:

write “out” to /sys/class/gpio/gpiol7/direction

fd=open("/sys/class/gpio/gpiol7/direction",0_WRONLY);
if (£d<0) fprintf (stderr,"Error!\n");
write(fd,"in" ,2);

close(fd);

44

Write GPIO Value

To write value of GPIO 17:
write /sys/class/gpio/gpiol7/value

fd=open("/sys/class/gpio/gpiol7/value" ,0_WRONLY) ;
if (£d<0) fprintf (stderr,"Error opening!\n");
write(fd,"1",1);

close(fd);

45

Read GPIO Value

To read value of GPIO 17:
read /sys/class/gpio/gpiol7/value

fd=open("/sys/class/gpio/gpiol7/value",0_RDONLY);
if (£d<0) fprintf (stderr,"Error opening!\n");
read (fd,buffer ,16);

printf ("Read Y%c from GPIO17\n",buffer [0]);

close (fd);

Note: the value you read is ASCII, not an integer.

Also Note, if reading and you do not close after read you will have to rewind using

1seek (fd,0,SEEK_SET) ; after your read.

VA A 4 16

Delay

e Busy delay (like in ECE271).
for(i=0;i<1000000;i++);
Harder to do in C. Why?
Compiler optimizes away.

e usleep() puts process to sleep for a number of
microseconds. But can have issues if want exact delay.
Why? OS potentially context switches every 100m:s.

e Other ways to implement: Set up PWM? Timers?

/Y 47

Using fopen instead?

e Need to fflush() after writes (linefeed not enough?)

e Need to frewind () after reads?

-y 48

C Pitfalls

e Be careful cut and pasting! Especially the size of strings
you are sending with write()

e Know the difference between °C’> and "C"

e Remember the strings we are reading/writing are ASCI|
'0" and "1’ not integers

-y 49

Waiting for Input

e Busy loop. Bad, burns CPU / power
e usleep() in loop. Can delay response time.

e Interrupt when ready! poll()

50

GPIO Interrupts on Linux

May need a recent version of Raspbian.

First write “rising”, Tfalling”, or "both” to
/sys/class/gpio/gpiol7/edge.

Then.apen:and;poll /sys/class/gpio/gpiol7/value.

int result;

fd=open("/sys/class/gpio/gpiol8/value" ,0_RDONLY) ;
fds.fd=1fd;
fds.events=POLLPRI|POLLERR;
while (1) {
result=poll (&fds,1, -1);
if (result<0) printf("Error!\n");
lseek (fd,0, SEEK_SET);
read (fd,buffer,1); }

Buffered “Stream” 1/0

e Slightly higher-level I/O routines in C library

e Buffered I/0

e Still use open/close/read/write underneath
Can find file descriptor with fileno ()

® FILE *f;
f=fopen("filename","r");
if (£==NULL) fprintf (stderr,"Error!\n");
fwrite(buffer ,size ,members,hf);
fclose (f);

e Buffered 1/O (saves overhead, fewer syscalls, maybe
makes | /O faster, but also adds potential delay)
e Use fflush() to force buffer flush

-y 5

e Use rewind () to rewind to beginning of file

53

