
ECE 471 – Embedded Systems
Lecture 14

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

29 September 2023

https://web.eece.maine.edu/~vweaver

Announcements

• Homework #4 was due.

• Homework #5 will be posted today

• Will loan out i2c displays. Be careful with them!

If not working, let me know.

• Raspberry Pi5 announced yesterday

1

i2c

• Inter-Integrated Circuit, Invented by Philips (now NXP)

in 1982

• Broadcom and others for some reason call it TWI “Two

Wire Interface”

• Two-wires (4 if you include Vdd and Ground)

• Since 2006, no licensing fees (though do have to pay to

reserve number)

2

Why is i2c popular?

• Stable standard

• Relatively easy to implement

• Not many wires

• Good enough

• Cheap

3

Uses of i2c

• SMbus

• DDC (VGA/HDMI) (video card / monitor

communication)

• Configuring SDRAM

• Temp sensor and fan chips on motherboards

• Wii nunchuck

4

Hardware Overview

• Serial Data Line (SDA) and Serial Clock (SCL), Open

Drain, Pulled up by resistors

• Open drain means output can be wired together

If not driven, high-Z, line floats high

If driven, pulls to zero

Can have multiple connected to one line, “wired-and”

(wired-nor)

Vdd

Output

5

Limitations

• Need unique address for each device

7-bit (or 10-bit) address

• Length of bus limited to a few meters (400pF)

You can get extenders (LTC4311?)

6

Protocol Revisions/ Speed

Speed: (actual transfers slower due to overhead)

• Standard=100kbits/s

• slow=10kbits/s

• v1 1992 added fast=400kbits/s + 10-bit addr

• v2 1998 High-speed 3.4Mbits/s w power saving

• v3 2007 fast plus 1Mbits/s (20ma)

• v4 2012 5MHz UFm (Ultra Fast mode), USDA, USCL,

no pull-ups, unidirectional

• v5, v6 no major changes

7

• i3c = “Improved” i2c, fancy new protocol, falls back to

i2c

8

Master/Slave Terminology

• Traditionally the main controller driving the bus was

called the “Master” and the devices were called “Slaves”

• There has been a recent movement to use other terms

for this

• I will use “controller” and “device” instead, but you will

find that various specs, documents, and Linux interfaces

use the old terminology

9

High-level Protocol

• Controller (generates clock, init transaction)

Device (responds)

• Can be multiple controllers / devices

• Controller sends start bit, 7-bit device address, then

read/write bit

• Device responds with ACK

• Reads and writes are 8 bits data, followed by 1 ACK bit

• Send stop bit when done

• Address and Data sent Most-significant Bit first

10

Low-level Protocol

• Busses start out floating high (by pull-up resistors)

• Start bit: SDA transition high-low while SCL high

• To transmit bit, master sets SCL low, then sets SDA to

value, lets SCL float high, wait 4us, set SCL low for next

cycle

• After every 8-bits other side sends ACK bit. The master

toggles the clock then reads the SDA value.

◦ If master reads 0, everything is OK

◦ If writing, and read 1, means error or not there (why?)

11

◦ If reading, and read 1, means done reading

• Stop bit: SDA transition low-high while SCL high

(only start/stop SDA transitions happen when SCL is

high).

SDA

SCL

PS B1 B2 BN

Figure 1: Protocol diagram from Wikipedia

12

Other Features – Clock Stretching

• If device not ready, can indicate it needs more time

• Device can hold SCL low until it is done processing,

master should check to be sure SCL floated back high

before continuing

• Note: this was broken on Raspberry Pis before the Pi4

13

Other Features – Arbitration

• What happens if multiple controllers send at once?

How do you share the bus?

• Arbitration: controllers monitor SDA and won’t start

unless idle.

• Deterministic arbitration.

If tries to send a 1 and notices something else is pulling

to zero, then a collision and stops. Low addresses

automatically win.

14

Other Features – Repeated Start

• Can send multiple messages or to multiple devices

without sending stop but instead sending a new start

bit

15

Message Types

• Controller writing to device:

Sends start, address, write bit (0), waits for ACK (low),

then sends 8 bits of data, waits for ACK, etc.

• Controller reading from device:

Sends start, address, read bit (1), waits for ACK (low),

then waits for 8 bits, sends ACK if wants more, otherwise

stop if done.

16

i2c Reserved Addresses

Address R/W Bit Description

000 0000 0 General call address
000 0000 1 START byte (helps make polling cheaper)
000 0001 X CBUS address
000 0010 X Reserved for different bus format
000 0011 X Reserved for future purposes
000 01XX X Hs-mode master code
111 10XX X 10-bit slave addressing
111 11XX X Reserved for future purposes

10-bit addresses work by using special address above with

first 2 bits + R/W, then sending an additional byte with

the lower 8 bits.

17

SMbus

• Enhanced i2c bus interface

• Has stricter rules about some signals

• Can do more advanced things, such as have slaves send

notifications to master

18

i2c and Rasp-pi

• 3.3V

• default speed is 100kHz. You can change this with the

baudrate= module parameter.

• The Pi actually has multiple i2c busses, only one

commonly used

◦ i2c-1: The generic one on pins 3+5 (built-in pullups)

◦ i2c-0: on Model B and newer one on camera interface

◦ on Model 2B/3B one for “hat” EEPROM

◦ on Model 3B/4B GPIO extender, driven by GPU?

19

Setting up i2c Rasp-pi Linux Driver

• These days the best way to do this is run sudo

raspi-config and select (5) Interfacing Options, (P5)

i2c, then say yes enable it. You might have to reboot

• In the old days you might have to manually set things

up

◦ modprobe i2c-bcm2835 (in even older days this was

called i2c-bcm2708) and i2c-dev

May also want to edit /etc/modules and remove from

blacklist /etc/modprobe.d/raspi-blacklist.conf

20

Other i2c Rasp-pi Linux Driver Notes

• May want to install i2c-tools if possible apt-get

i2c-tools

• i2c port 1 (/dev/i2c-1). Used to be i2c-0 in really old

days. Other boards (beaglebone black) likely different.

• Note that clock-stretching does not work on Pi before

model 4.

• Note that repeated-start also might not be supported,

though the driver might have workaround, use struct

i2c rdwr ioctl data ioctl for this

21

Linux i2c interface

• Like with GPIOs, kernel can drive it, or be exposed to

userspace

• i2c-dev module must be installed (and i2c driver)

• Open the device node, /dev/i2c-1

• Use ioctls I2C SLAVE to set the address of the device

we wish to talk to.

• Use standard read or write calls to communicate with

22

the device

• Close the device when done.

• i2c device addresses are 7 bits, but when sent the r/w bit

is put at end. This can be confusing; some spec sheets

will list a slave address as 0xE0/0xE1 (8 bits, including

r/w) but Linux exports this as 0x70 (0xE0 shifted right

by 1).

23

Sample i2c Linux code

For more details on this, see the HW#5 handout.
uns i gned char b u f f e r [1 7] ;
i n t d i s p l a y f d ;

/∗ open ∗/
d i s p l a y f d = open (”/ dev/ i2c −1” , O RDWR) ;
i f (d i s p l a y f d < 0) f p r i n t f (s t d e r r , ” E r r o r !\ n ”) ;

/∗ s e t s l a v e add r e s s ∗/
r e s u l t=i o c t l (d i s p l a y f d , I2C SLAVE , 0x70) ;
i f (r e s u l t < 0) f p r i n t f (s t d e r r , ” E r r o r !\ n ”) ;

/∗ w r i t i n g ∗/
b u f f e r [0]= HT16K33 REGISTER SYSTEM SETUP | 0x01 ;

24

i f ((w r i t e (d i s p l a y f d , b u f f e r , 1)) !=1) {
f p r i n t f (s t d e r r , ” E r r o r !\ n ”) ;

}

/∗ c l o s i n g ∗/
c l o s e (d i s p l a y f d) ;

25

i2c on the Pi – detecting

i2cdetect -y -r 1

0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: 70 -- -- -- -- -- -- --

26

LED Driver Chip

• This is a ht16k33, datasheet available:

http://www.adafruit.com/datasheets/ht16K33v110.pdf

• Supports up to 16x8 LEDs, as well as keypad input. Can

dim display, also blink. Common cathode.

-|>|- common

• Works by rapidly scanning all segments fast enough

cannot see.

27

http://www.adafruit.com/datasheets/ht16K33v110.pdf

• To set up, write byte commands, high 4 bits command

lower 4 bits data. (note, datasheet lists these as bits

15-8, because if you were doing things manually the i2c

write address byte would be bits 7..0)

• To set up full display, write the pointer offset of internal

framebuffer, than 16 bytes of on/off data.

• Actual LED hooked up is a BL-Q56D-43UG 4x7 segment

Ultra-Green display (or similar, colors vary), common

cathode.

28

Multiple Displays

• Could you hook up multiple of these displays to one i2c

bus?

• But they all have the same address (0x70)!

• Often boards will let you configure the address by pulling

pins up/down/floating

• These boards have solder pads on the back which you

can short to change the address to any in the range 0x70

to 0x78

29

Benefit of OS

• Code is portable across all machines with i2c bus

• Can use same code on Gumstix, Rasp-Pi, Beaglebone,

etc.

• Only change would be to update the bus number

(It’s i2c-3 on gumstix for example).

30

