
ECE 471 – Embedded Systems
Lecture 17

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

6 October 2023

https://web.eece.maine.edu/~vweaver


Announcements

• HW#6 won’t be posted until next week. Enjoy your

break

1



Midterm Info

• In class

• Closed books, closed notes

Can have one page of notes, 8.5”x11”, one-sided

• Mostly short answer, questions like homework

• Won’t make you code from scratch, but it might give

you some code similar to that on homework and ask you

what it’s doing or what’s wrong with it

• Rough outline of things covered

◦ Characteristics of embedded system

2



◦ Benefits of having OS

◦ Be able to read C code and know what it’s doing

◦ GPIO and i2c

know the limitations

be familiar with Linux C code for accessing

◦ Code density, but at high level (no assembly coding)

3



Real Time on an Atari 2600

• Older 8-bit systems would have real time constraints

• Hardware needed to be updated, sometime to cycle-exact

(1us) deadlines or it wouldn’t work

• Example: Atari 2600 video or Apple II disk accesses

4



Atari 2600 Background

• Video game system from 1977

• 6507 processor – 6502 but only 12 address pins (8k

address range)

• 128 bytes of RAM. Total. That includes stack

• Memory mapped I/O for audio/video

• No firmware, jumps directly to reset vector

5



Atari 2600 Graphics – CRT

Visible Picture

Overscan

Vertical Sync

Vertical Blank

H
o

ri
z
o

n
ta

l
B

la
n

k

3 scalines

37 scanlines

192 scanlines

30 scanlines

2
6
2
 s

c
a
n

li
n

e
s

66 GPU 160 GPU

76 CPU Cycles

• NTSC gives you 262 lines at 60Hz (PAL, in europe, more

lines 50Hz)

6



Atari 2600 Graphics

• Playfield

◦ One foreground, one background color (out of 128

palette)

◦ Have 20 bits of framebuffer. Each block 4 pixels wide.

Right half screen mirror or dupe of right

All you get is 40 columns, no rows

• Sprites

◦ Two sprites. 8 pixels wide. You can scale them or

duplicate them

7



◦ No height, only width. Can have own color

◦ Can’t specify location. X location you have to write a

register just as beam is where you want it

• Missile

◦ One pixel wide.

◦ Same color as playfield

8



Atari 2600 Graphics – Racing the Beam

• How can you possibly make a game from this?

• You need to “race the beam”

• Your code needs to redraw the screen just ahead of the

beam

• Real-time, you often only have a few 6502 assembly

instructions to do this and if you miss your deadline

graphics can be corrupt or the whole screen loses sync

9



Atari 2600 Graphics – Possibilities

• Asynchronous playfield – rewrite 20-bit framebuffer each

line before it is drawn

• Change colors mid screen

• Turn on/off sprites, missiles, re-use later in screen

10



Atari 2600 – Other Features

• Collision detection in hardware

• Two channel sound, not designed for music. Some notes

not physically possible to play due to clock divider

11



Atari 2600 – Examples

• Some examples in class if the projector cooperates

• (Spoiler, it didn’t)

12



Software Sources of Jitter

• Interrupts. Taking too long to run; being disabled (cli)

• Operating system. Scheduler. Context-switching.

• Dynamic memory allocation, garbage collection.

13



Latency in Modern Systems

• Modern software stack has sources of latency

14



Video game keyboard latency example

See Dan Luu’s Paper “Computer Latency: 1977-2017”

https://danluu.com/input-lag/

• 1977 computers can have less latency to getting keypress

on screen than fastest 2010s computers

• Having a fast processor only helps so much

• Slow hardware (keyboards, LCD displays), layers of

abstraction in the way

• Apple II (1977) 30ms, modern machines 60-100+ms

15

https://danluu.com/input-lag/


Latency of Apple II

• CPU running code reading memory access

Each CPU instruction handful of cycles at 1MHz (few

usec)

• Press happens, high bit set along with ASCII code, CPU

reads in

• CPU writes out ASCII value to memory

• Video gen code running in parallel at 60 frames per

second

• Electron beam scanning, reads out RAM, runs through

16



decode ROM to get 7-bit pattern, writes to screen within

one frame worst case

17



Latency of Modern System

• Press key, keyboard is own embedded system with CPU,

scans keyboard, gets value, encodes it up as USB packet

• Sends out over USB bus (complex and with latency)

• USB controller gets packet, sends interrupt to CPU

• CPU gets interrupt, takes packet, notes it, returned from

interrupt

• Later bottom half runs, decodes, to input subsystem,

• Operating system sees if anything is waiting for the

input, if so it wakes it up (may take a bit if anything

18



else running)

• If it’s a GUI, might have to run and see which window

has focus, etc

• Program itself finally gets notified of keypress. scanf().

Immediately printf()

• Terminal emulator, update the graphics for the window

(colors, font processing)

• GUI compositor puts together screen, tells OS

• OS sends out over PCIe bus to GPU

• GPU runs shaders/whatever outputs to display via HDMI

• LCD display gets the data, decodes it to display it

19



• Display might buffer a few frames to do extra processing

(turn this off with “gaming” mode)

20


