
ECE 471 – Embedded Systems
Lecture 19

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

16 October 2023

https://web.eece.maine.edu/~vweaver


Announcements

• No class Wednesday due to Engineering job fair (will

send e-mail)

• Don’t forget RT homework HW#6

• HW#6 comment: the 3rd/4th experiment might slow

down your system to be unusable if logged in at the GUI.

If this happens and you can’t complete the question, just

mention that and complete things the best you can.

1



Previous Homework Note – Breaking the
Build

• I do take off points if your code won’t compile

• In real world if you check in code that breaks the build

it will annoy a lot of people (some companies will give

out trophies to try to shame you)

• Code that won’t compile can be more annoying than

buggy code, as no one else can work on the project until

it is fixed

• Linux kernel developers don’t like it because it implies

2



the code you sent them was never tested (because, how

could you test it if doesn’t build)

3



Common OS scheduling strategies

• Event driven – have priorities, highest priority pre-empts

lower

Usually can “yield” rest of your timeslice

• Time sharing – only switch at regular clock time, round-

robin

4



Scheduler Types

• There is a large body of work on scheduling algorithms.

• Assume you tell it to run tasks, they are put into queue

• How should they be run? A few (not exhaustive)

possibilities:

◦ Simple: In order the jobs arrive

◦ Static: (RMS) Rate Monotonic Scheduling – shortest

first

◦ Dynamic: (EDF) Earliest deadline first

5



Deadline Scheduler Example

• Three tasks come in

◦ A: deadline: finish by 10s, takes 4s to run

◦ B: deadline: finish by 3s, takes 2s to run

◦ C: deadline: finish by 5s, takes 1s to run

• Can they meet the deadline?

In-order A A A A B B C - - -

RMS C B B A A A A - - -

EDF B B C A A A A - - -

6



Where do the deadlines come from?

• Often from hardware, or from the spec

• Can you change them? Maybe, but might involve

hardware changes

• Examples

◦ Write to device, need to do all 4 memory accesses

within 100us

◦ Car notices brakes locking, start pumping them within

100ms

◦ Drop laptop, notice and park hard-drive within 100ms

7



Priority Based Scheduling

• It’s actually rare for an OS to let you specify a deadline

• Usually instead they are priority based (like in HW#6)

◦ Have multiple tasks running, assign priority

◦ In previous example, B highest, then C, then A

◦ B can pre-empt C and A

• What can happen if overcommit resources? Starvation

8



IRQ - - - - - I - - - -

HIGH - - - - B - B - - -

MEDIUM - - C - - - - - - -

LOW A A - A - - - A - -

OS ! ! ! ! ! ! ! ! ! !

9



Priority Inversion

• Task priority 3 takes lock on some piece of hardware

(camera for picture)

• Task 2 fires up and pre-empts task 3

• Task 1 fires up and pre-empts task 1, but it needs same

HW as task 3. Waits for it. It will never get free.

(camera for navigation?)

• Space probes have had issues due to this.

10



Real Time without an O/S

Often an event loop. All parts have to be written so

deadlines can be met. This means all tasks must carefully

be written to not take too long, this can be extra work if

one of the tasks is low-priority/not important
main() {

while (1) {

do_task1 (); // read sensor

do_task2 (); // react to sensor

do_task3 (); // update GUI (low priority)

}

}

11



Real Time with an O/S

What if instead you ran all three at once, and let OS

switch between them

while (1) { while (1) { while (1) {

do_task1 (); do_task_2 (); do_task3 ();

} } }

12



Bare Metal

• What if want priorities?

• Have GUI always run, have the other things happen in

timer interrupt handler?

• What if you have multiple hardware all trying to use

interrupts (network, serial port, etc)

• At some point it’s easier to let an OS handle the hard

stuff

13



Real Time Operating System

• Can provide multi-tasking/context-switching

• Can provide priority-based scheduling

• Can provide low-overhead interrupts

• Can provide locking primitives

14



Hard Real Time Operating System

• Can it be hard real time?

• Is it just some switch you can throw? (No)

• Simple ones can be mathematically provable

• Otherwise, it’s a best effort

15



Priority Based, like Vxworks

• Each task has priority 0 (high) to 255 (low)

• When task launched, highest priority gets to run

• Other tasks only get to run when higher is finished or

yields

• What if multiple of same priority? Then go round-robin

or similar

16



Free RTOS

• Useful article series about this: https://www.digikey.com/en/maker/

projects/what-is-a-realtime-operating-system-rtos/28d8087f53844decafa5000d89608016

• Footprint as low as 9K

• Pre-emptive or co-op multitasking

• Regularly scheduled tasks (vTaskDelayUntil(), i.e. blink

LED every 10 ticks)

• Task priority

• Semaphores/Mutexes

• Timers

17

https://www.digikey.com/en/maker/projects/what-is-a-realtime-operating-system-rtos/28d8087f53844decafa5000d89608016
https://www.digikey.com/en/maker/projects/what-is-a-realtime-operating-system-rtos/28d8087f53844decafa5000d89608016


• Stack overflow protection

• Inter-process communication (queues, etc)

• Power management support

• Interrupts (interrupt priority)

18



Is Regular Linux a RTOS

• Not really

• Can do priorities (“nice”) but the default ones are not

RT.

• Aside, “nice” comes from old UNIX multi-user days,

when you could be nice and give your long-running jobs

a low-priority so they wouldn’t interfere with other people

doing interactive tasks

19



PREEMPT Kernel

• Linux PREEMPT RT

• Faster response times

• Remove all unbounded latencies

• Change locks and interrupt threads to be pre-emptible

• Have been gradually merging changes upstream

20



Typical kernel, when can you pre-empt

• When user code running

• When a system call or interrupt happens

• When kernel code blocks on mutex (lock) or voluntarily

yields

• If a high priority task wants to run, and the kernel is

running, it might be hundreds of milliseconds before you

get to run

• Pre-empt patch makes it so almost any part of kernel can

be stopped (pre-empted). Also moves interrupt routines

21



into pre-emptible kernel threads.

22



Linux PREEMPT Kernel

• What latencies can you get?

10-30us on some x86 machines

• Depends on firmware; SMI interrupts (secret system

mode, can’t be blocked, emulate USB, etc.)

Slow hardware; CPU frequency scaling; nohz

• Special patches, recompile kernel

23



Linux Real Time Priorities

• Linux Nice: -20 to 19 (lowest), use nice command

• Real Time: 0 to 99 (highest)

• Appears in ps as 0 to 139?

• Can set with chrt command (see HW#6)

24



Co-operative real-time Linux

• Xenomai

• Linux run as side process, sort of like hypervisor

25



Next up is SPI

Start early on it as there’s more than one lecture of material

26


