
ECE 471 – Embedded Systems
Lecture 21

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

23 October 2023

https://web.eece.maine.edu/~vweaver

Announcements

• Keep thinking about projects, topic due November 3rd

• HW#7 was posted

• Give back and go over midterm. Average grade was a

91

1

HW#7 – C Floating Point Notes

• You might not have used floating point in C much.

Briefly covered in ECE271

• 32-bit integer only lets you have values from -

2,147,483,648 to 2,147,483,647

• What if you want bigger? Smaller? Fractional /

decimals?

2

HW#7 – Fixed Point

• With integer math you can have “fixed point” where you

arbitrarily put the decimal point at a fixed place in the

value.

• 16.16 means 16 bits integer part, 16 bits fractional

• add/subtract work as normal, have to adjust after

multiply/divide

• You might use this on an embedded system w/o hardware

floating point

3

HW#7 – Arbitrary Precision Math

• You can have libraries that dynamically allocate memory

for arbitrarily large numbers and fractions

• This is overkill for normal math you might want to do

4

HW#7 – Floating Point

• Also gone over in ECE271

• For a 32 bit value, have one bit for sign, X bits for

exponent, X bits for mantissa. How this actually works

a bit beyond this class

• Can have a much wider range of values, also things like

infinity, NaN, etc.

• Can do this all in hardware. Many low-end embedded

systems these days will have support (all the Pis do)

5

HW#7 – Floating Point in C

• float is 32-bit

• double is 64-bit

•
• C will auto-cast things so you can do things like this,

but be careful as sometimes the rules are a bit obscure.

Generally when converting float to integer it will truncate

rather than round

i n t x=5;

doub l e d ;

6

d=x ;

• Printing. First prints a double. Second prints a double

with only 2 digits after decimal.

p r i n t f (”% f \n” , temp) ; // p r i n t 32− b i t f l o a t

p r i n t f (”% l f \n” , temp) ; // p r i n t 64− b i t doub l e (l ong f l o a t)

p r i n t f (”%.2 l f \n” , temp) ; // p r i n t doub l e w i th 2 d i g i t s a f t e r .

7

HW#7 – Floating Point Pitfalls

• Sort of like in decimal where only fractions of 1/2 and

1/5 have exact values (because base 10) on binary

computers only multiples of 1/2 are exact

• This means unexpected things happen, like if you add

1.5 and 1.5 you might not get 3.0 but something close

like 2.999999999999999943

• That will round normally in say printf() but if you do an

implicit cast to an integer you might confusingly get 2

instead of 3

8

• You can use functions like round() and ceil() and

floor() to do proper rounding

• You can force constants to be double/floats by putting

a decimal point, so 9.0/5. will be 1.8 like expected but

9/5 will be truncated to 1 (using integer math)

9

Real Time Wrapup

Some coding tips on how to get the best real time behavior

out of your code

10

Complications – Interrupts

• Why are interrupts slow?

• Shared lines, have to run all handlers

• On Cortex-A systems have one IRQ line, have to query

all to see what caused it. Cortex-M improves this by

having dedicated vector for each piece of hardware

• When can they not be pre-empted? IRQ disabled? If

a driver really wanted to pause 1ms for hardware to be

ready, would often turn off IRQ and spin rather than

sleep

11

• Higher priority IRQs? FIR on ARM?

• Top Halves / Bottom Halves

12

Complications – Threading

• A thread is a unit of executing code with its own program

counter and own stack

• It’s possible to have one program/process have multiple

threads of execution, sharing the same memory space

• Why?

◦ Traditionally, to let part of program keep running when

another part waiting on I/O (gui keep drawing while

waiting for input, sound playing in background during

game, etc)

13

◦ Lets one program spread work across multiple cores

• This complicates the schedule, and also makes priority

more complex

14

Complications – Locking

• When shared hardware/software and more than one thing

might access at once

• Example:

◦ thread 1 read temperature, write to temperature

variable

◦ thread 2 read temperature variable to write to display

◦ each digit separate byte

◦ Temperature was 79.9, but new is 80.0

◦ Thread 1 writing this

15

◦ What if Thread 2 reads part-way through? Could you

get 89.9?

• Is this only a SMP problem? What about interrupts?

16

Scheduler Complications – Locking

• Previous was example of Race Condition (two threads

“racing” to access same memory)

• How do you protect this? With a lock

◦ Special data structure, allows only one thread inside

the locked area at a time

◦ This is called a “critical section”

l o c k (& temp lock) ; l o c k (& temp lock) ;

w r i t e d i s p l a y () ; r e ad t empe r a t u r e () ;

un lock (& temp lock) ; un lock (&temp lock) ;

17

Scheduler Complications – Locking

• Can you have race conditions on a single core?

◦ Yes, with interrupts

◦ On simple systems you can just disable interrupts

during critical section

◦ Usually can’t do that if have an OS

18

Scheduler Complications – Lock
Implementation

• Implemented with special instructions, in assembly

language

• Usually you will use a library, like pthreads

• mutex/spinlock

• Atomicity

19

Memory Allocation in Embedded Systems

20

Memory Allocation – Dynamic

• Using malloc()/calloc() or new()

• In C have to make sure you free() at end

• Downsides:

◦ What to do if fails?

Can you handle that? What if error code also tries to

alloc?

◦ Timing overhead? Is it deterministic?

Especially problem with high-level languages and

garbage collection

21

◦ Fragmentation: when there’s plenty of RAM free but

it’s in small chunks when you need a large chunk

22

Memory Allocation – Static

• Allocate all memory you need at startup

• Fail early

• This isn’t always possible, but avoids issues with failure,

overhead, etc.

• Free RTOS (newer) allows static allocation at compile

time

23

Linux Memory Issues

• Even if you statically allocate memory, on system with

virtual memory it might swap out to disk

• This can suddenly make your code unexpectedly slower,

ruin real-time performance

• Can you prevent this?

◦ mlockall() syscall can lock memory so it stays in

RAM, never goes to disk

◦ So at start of program, allocate RAM, touch it (or

prefault) to bring it in, then mlock() it

24

