
ECE 471 – Embedded Systems
Lecture 25

Vince Weaver

https://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

1 November 2023

https://www.eece.maine.edu/~vweaver


Announcements

• Don’t forget HW#8 (1-wire)

• Don’t forget Project topics by Friday

will respond to them via e-mail

• Please send an e-mail with your topic even if you’ve

talked to me about it in person

1



Quick Rundown of Project Topic
Possibilities

• There’s a list of possible projects and a link to past

projects toward the end of the assignment pdf

• There’s also a list of parts. Lots of sensors, displays, and

other things available

• If you do want to borrow parts, give me a bit of warning

as sometimes can take a bit to find it and make sure it’s

in working condition

2



Computer Security
and why it matters for embedded systems

• Most effective security is being unconnected from the

world and locked away in a box. Until recently most

embedded systems matched that.

• Modern embedded systems are increasingly connected

to networks, etc. Embedded code is not necessarily

prepared for this.

• Internet of Things: IoT (the S is for Security)

3



Big Event Where This Matters

• Election next Tuesday

• Are voting machines embedded systems?

• Places with Electronic Voting Booths (Maine generally

has paper ballots which are a bit better)

• Can you “hack” an election?

• Have been found trivial to hack. Running windows, with

exposed USB connector.

• How did researchers get access to them. (eBay)

• Attacks often have to be local unless you happen to hack

4



main database

• Paper ballots tend to be more secure

• Social Engineering issues.

• What about vote-by-mail? Ruins anonymous voting, as

people can bribe/watch you vote

• Internet voting (?!)

5



Voting Machines

• Maine has paper ballot — not too bad

• Often are old and not tested well (Windows XP, only

used once a year)

• How do researchers get them to test? e-bay?

• USB ports and such exposed, private physical access

• Can you trust the software? What if notices it is Election

Day and only then flips 1/10th the vote from Party A to

Party B. Would anyone notice? What if you have source

code?

6



• What if the OS does it. What if Windows had code that

on Election Day looked for a radio button for Party A

and silently changed it to Party B when pressed?

• OK you have and audit the source code. What about

the compiler? (Reflections on Trusting Trust). What

about the compiler that compiled the compiler?

• And of course the hardware, but that’s slightly harder to

implement but a lot harder to audit.

7



Computer Security – The Problem

• Untrusted inputs from user can be hostile.

• Users with physical access can bypass most software

security.

8



What can an attacker gain?

• Fun / Mischief

• Profit

• A network of servers that can be used for illicit purposes

(SPAM, Warez, DDOS)

• Spying on others (companies, governments, etc)

9



Sources of Attack

• Untrusted user input

Web page forms

Keyboard Input

• USB Keys (CD-ROMs)

Autorun/Autostart on Windows

Scatter usb keys around parking lot, helpful people plug

into machine.

• Network

10



cellphone modems

ethernet/internet

wireless/bluetooth

• Backdoors

Debugging or Malicious, left in place

• Brute Force – trying all possible usernames/passwords

11



Types of Security Compromise

• Crash

“ping of death”

• DoS (Denial of Service)

• User account compromise

• Root account compromise

• Privilege Escalation

• Rootkit

• Re-write firmware? VM? Above OS?

12



Unsanitized Inputs

• Using values from users directly can be a problem if

passed directly to another process

• If data (say from a web-form) directly passed to a UNIX

shell script, then by including characters like ; can issue

arbitrary commands: system("rm %s\n",userdata);

• SQL injection attacks; escape characters can turn

a command into two, letting user execute arbitrary

SQL commands; xkcd Robert ’); DROP TABLE

Students;--

13



Buffer Overflows

• User (accidentally or on purpose) copies too much data

into a fixed sized buffer.

• Data outside expected area gets over-written. This can

cause a crash (best case) or if user carefully constructs

code, can lead to user taking over program.

14



Buffer Overflow Example
void function(int *values , int size) {

int a[10];

memcpy(a,values ,size);

return;

}

Maps to
push {lr}

sub sp ,#44

memcpy

add sp ,#44

pop {pc}

15



a[0]

a[1]

a[2]

a[3]

a[4]

a[6]

a[5]

a[7]

a[8]

a[9]

link register

Stack pointer before entry

Stack pointer after prolog

A value written to a[11] overwrites the saved link register.

If you can put a pointer to a function of your choice there

you can hijack the code execution, as it will be jumped to

at function exit.

16



Mitigating Buffer Overflows

• Extra Bounds Checking / High-level Language (not C)

• Address Space Layout Randomization

• Putting lots of 0s in code (if strcpy is causing the

problem)

• Scanning for unusual characters (can you write all-ASCII

shellcode?)

• Running in a “sandbox”

17



Coding Mistakes with Security Implications

18



Dangling Pointer / Null Pointer
Dereference

• Typically a NULL pointer access generates a segfault

• If an un-initialized function pointer points there, and

gets called, it will crash. But until recently Linux allowed

users to mmap() code there, allowing exploits.

• Other dangling pointers (pointers to invalid addresses)

can also cause problems. Both writes and executions can

cause problems if the address pointed to can be mapped.

19



Privilege Escalation

• If you can get kernel or super-user (root) code to jump

to your code, then you can raise privileges and have a

“root exploit”

• If a kernel has a buffer-overrun or other type of error and

branches to code you control, all bets are off. You can

have what is called “shell code” generate a root shell.

• Some binaries are setuid. They run with root privilege

but drop them. If you can make them run your code

before dropping privilege you can also have a root exploit.

20



◦ ping (requires root to open raw socket)

◦ X11 (needs root to access graphics cards)

◦ web-server (needs root to open port 80).

21


