
ECE 471 – Embedded Systems
Lecture 26

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

3 November 2023

https://web.eece.maine.edu/~vweaver


Announcements

• Project topics were due, I will respond to them

• Midterm #2 on Friday November 17th

• HW#9 will be posted, you can have two weeks as its bit

harder, that does mean it’s due same day as midterm

1



HW#9 – Summary

• Use a temperature probe (either SPI or 1-wire) and

output the result to the i2c display

◦ Re-use i2c display code from earlier homework

◦ Re-use temp code (either TMP36 or the 1-wire)

◦ Display the temperature on display

• When done can turn back in parts (assuming you aren’t

using them for the project)

2



HW#9 Notes – Modular Code

• In previous homeworks we put everything in one C file

• This isn’t really practical for large projects

• By splitting things up into smaller files you can have

some benefits:

◦ Easier to organize/find code

◦ Can re-use code easier

◦ Less chance of merge conflicts when multiple people

working on project in git

◦ Can take common code and make libraries

3



HW#9 – Writing Modular Code

• In C you can compile each C file into its own object file,

link together at end

• API defined in a header .h file

• For example in the homework, we could put

temperature read code into its own file with a double

get temperature(void) interface

• For other C files to see this, you need to export the

definition. Usually this is done by putting the advance

definition double get temperature(void); in a .h

4



header file and then including it in the other files

• Note: don’t put full C functions in header files. I know

this is a C++ thing but it’s usually frowned upon when

programming in C

• Each file does not need a main() function, you only

need one per combined program.

5



HW#9 – Building Modular Code

• To link the various .o files together involves the “linker”.

However it’s easier to just let gcc do it (gcc knows

how to run the linker for you) gcc -o display temp

display.o temperature.o

• The linker merges the .o files into one big executable,

and makes sure the placeholders to functions/variables

in all of the files get the right addresses/pointers to

where things live in the finished executable.

• How do you make sure when you change one C file that

6



everything that uses it is also rebuilt? A well-crafted

Makefile will have all these dependencies in place and

will rebuild everything properly.

7



HW#9 – Converting Floating Point to
Digits

• Use sprintf()

cha r s t r i n g [ 1 2 8 ] ;

doub l e t empe ra tu r e ;

s p r i n t f ( s t r i n g ,”%.1 l f ” , t empe ra tu r e ) ;

/∗ Now s t r i n g [ 0 ] has f i r s t d i g i t , s t r i n g [ 1 ] second , e t c ∗/
• Use division/modulus

doub l e t empe ra tu r e =23.4 ;

i n t hundreds , tens , ones , r ema inde r ;

8



hundreds=tempe ra tu r e /100 ;

r ema inde r=tempe ra tu r e %100;

t en s=rema inde r /10 ;

ones=rema inde r %10;

9



HW#9 – Writing Good Testcases

• Once you have written your nice modular code, how can

you test it?

• Need to write some test cases that test a wide range of

behaviors

• In the homework I have you think up some test cases

10



Types of Security Compromise

• Crash

“ping of death”

• DoS (Denial of Service)

• User account compromise

• Root account compromise

• Privilege Escalation

• Rootkit

• Re-write firmware? VM? Above OS?

11



Information Leakage / Side Channel
Attacks

• Can leak info through side-channels

• Detect encryption key by how long other processes take?

Power supply fluctuations? RF noise?

• Timing attacks

• If code takes different paths through code can notice

this via linked info

Solution: cycle-invariant code, takes same amount of

time for all paths through code (really hard to write

12



code like this)

• Recent CPU architecture extensions to help with this

(ARM64 DIT data independent timing)

13



Information Leakage: Meltdown and
Spectre

• Can use timing to find if address is in cache

• If speculative execution, can do things like

if (secret&1) a[0]=1;

else a[4096]=1;

then use timing to see which one was brought in

14



Deceptive Code

• Can you sneak purposefully buggy/exploitable code into

open source?

• Can you sneak bad code (or use typo-squatting) to trick

people in large public repositories (like javascript/npm)

• To-do at U of Minnesota where researches tried

(unsuccessfully it turns out) to sneak questionable code

into the kernel

• “Trojan Source” in the news: can use unicode (including

15



left-right reversal) to have code that looks correct but

compiler will compile differently x!=y vs y=!x

• Should code allow non-ASCII?

to apply updates

16



Finding Bugs

• Source code inspection

• Watching mailing lists

• Static checkers (coverity, sparse)

• Dynamic checkers (Valgrind). Can be slow.

• Fuzzing

17



perf fuzzer

• Fuzzers intentionally try invalid/dangerous input by

generating random inputs causing crash

• I wrote the perf fuzzer which found many bugs in

Linux kernel with the perf event open() syscall

18



Reporting Bugs

• So you found a security bug...

• Who do you contact?

• What’s responsible disclosure?

• Bug bounties

• Can be a hassle reporting properly, and companies are

always suspicious and can even accuse you of evil hacking

19



Computer Security

20



Social Engineering

• Often easier than actual hacking

• Talking your way into a system

• Looking like you know what you are doing

• “The Art of Deception”

21


