
ECE 471 – Embedded Systems
Lecture 9

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

23 September 2024

https://web.eece.maine.edu/~vweaver

Announcements

• HW#3 was assigned, sorry for the delay

• Most of the issue was making sure you can do it on

64-bit operating system

1

A first ARM assembly program: hello exit

.equ SYSCALL_EXIT , 1

.globl _start

_start:

//================================

// Exit

//================================

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT // put exit syscall number (1) in r7

swi 0x0 // and exit

2

Some GNU assembler notes

• Code comments

◦ @ is the traditional comment character

◦ # can be used on line by itself but will confuse

assembler if on line with code.

◦ Can also use /* */ and //

◦ *Cannot* use ;

• Instruction opcode operand order is destination, source

• Constant value indicated by # or $
• .equ is equivalent to a C #define

3

hello exit example

Assembling/Linking using make, running, and checking the

output.

lecture6$ make hello_exit_arm

as -o hello_exit_arm.o hello_exit_arm.s

ld -o hello_exit_arm hello_exit_arm.o

lecture6$./hello_exit_arm

lecture6$ echo $?

5

4

Let’s look at our executable

• ls -la ./hello exit arm

Check the size

• strip ./hello exit arm

Strip off the debugging info (makes smaller)

• hexdump -C ./hello exit arm

See the raw binary (well, hex) values

• readelf -a ./hello exit arm

Look at the ELF executable layout

• objdump --disassemble-all ./hello exit arm

5

See the machine code we generated

• strace ./hello exit arm

Trace the system calls as they happen.

6

hello world example.equ SYSCALL_EXIT , 1

.equ SYSCALL_WRITE , 4

.equ STDOUT , 1

.globl _start

_start:

mov r0 ,# STDOUT /* stdout */

ldr r1 ,= hello

mov r2 ,#13 @ length

mov r7 ,# SYSCALL_WRITE

swi 0x0

Exit

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number in r7

swi 0x0 @ and exit

.data

hello: .ascii "Hello␣World !\n"

7

New things to note in hello world

• The fixed-length 32-bit ARM cannot hold a full 32-bit

immediate

• Therefore a 32-bit address cannot be loaded in a single

instruction

• In this case the “=” is used to request the address

be stored in a “literal” pool which can be reached by

PC-offset, with an extra layer of indirection.

• Data can be declared with .ascii, .word, .byte

• BSS can be declared with .lcomm

8

Using gdb with hello world

• Run gdb ./hello world

• Type run to run program, will exit normally

• Can set breakpoint break exit

• Can single-step

• Can info regis to see registers

• Cam disassem to see disassembly

9

simple loop example

for(i=0;i<10;i++) do_something ();

mov r0 ,#0 # set loop index to zero

loop:

push {r0} # save r0 on stack

bl do_something # branch to subroutine , saving

return address in link register

pop {r0} # restore r0 from stack

add r0 ,r0 ,#1 # increment loop counter

cmp r0 ,#10 # have we reached 10 yet?

bne loop # if not , loop

10

string count example

Count the number of chars in a string until we hit a space.
ldr r1 ,= hello # load pointer to hello string into r1

mov r2 ,#0 # initialize count to zero

loop:

ldrb r0 ,[r1] # load byte pointed by r1 into r0

cmp r0 ,#’␣’ # compare r0 to space character

this updates the status flags

beq done # if it was equal , we are done

add r2 ,r2 ,#1 # increment our count

add r1 ,r1 ,#1 # increment our pointer

b loop # branch (unconditionally) to loop

done:

11

HW3 Notes – Getting Weird Errors

• If the code won’t assemble with errors about comment

char it’s often because you are compiling on a non-

ARM32 machine

• This will happen if you run “make” on x86

• If on 64-bit system be sure you use the 64-bit code.

I provide pre-disassembled files so you can still do the

homework on 64-bit without a cross-compiler installed

12

HW3 Notes – Printing an Integer

• Writing int to string conversion is a complex task

There are lots of ways to do it.

• When would you ever need code like this?

In extreme embedded systems cases you might not have

a printf() but still want to debug

13

HW3 Notes – Integer to String Algorithm

• Take integer

• Divide by 10, put remainder into array backwards

• Take quotient as next source and repeat until zero

• Also need to convert to ASCII. (by adding 0x30 or ‘0’)

14

HW3 Notes – ASCII

• American Standard Code for Information Interchange

• Old (late 1960s) standard for mapping text characters

to numbers

• 7-bits (top bit either 0 or used for other purposes)

• Below 32 are control chars (like linefeed)

• 32 is space

• 48-57 is 0-1

• 65-90 is A-Z, 97-122 is a-z (bit 5 flipped)

15

HW3 Notes – Unicode

• what about other languages?

• Unicode, in theory 32 bit should hold all possible

• Windows and Java used 16-bit chars, but turned out not

to be enough

• UTF-8 is interesting hack where bottom 127 chars map

to ASCII, but when top bit set starts a complicated

escape sequence that allows encoding any unicode value

in 1 to 5 bytes

• still gives benefit to American English

16

HW3 Notes – Division if no Divide?

• Original Pi-1B had ARM1176 without a divide

instruction

• To be backwards compatible even new Pis are compiled

w/o divide even though new chips have support

• Various ways in software. Iterative subtraction. Shift

and subtract.

• For constant values you can divide by instead multiplying

by the reciprocal

• gcc will do this. It use 32.32 fixed point multiply by

17

1/10. (429496730). ARM has umull instruction that

will do a 32x32 multiply and give you the top half of the

64-bit result.

18

HW3 Notes – Corner cases?

• Leading zero removal

• Signed numbers (put a ’-’ in front?)

19

Really Brief Overview of ARM32 Assembly

• There’s an Appendix at the end of these notes which

covers ARM32 Assembly in more detail

• You have memory, registers, ALU, Program Counter,

and flags (Negative, Zero, Carry, oVerflow): how do you

turn this into a functioning program?

20

Why code in Assembly?

• Small binaries

still useful on small embedded boards

• Optimal performance

still good all systems, but be careful as newer chips

might change the optimization parameters

21

ARM32 encoding

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmRd

RnS0 0 0cond Opcode

imm5
Shift

typ
Shift Sh

Reg

0 1 0 0

Data

Processing

Immediate value (if immediate)

ADD opcode

Immediate

22

ARM32 Assembly – Register moves

• Moving register values around

• mov r0,r1 – r0 is destination

• mov r0,#0 – move immediate value

• There are also msr and mrs to move into special system

variables

23

ARM32 Assembly – Load/Stores

• ARM32 is load/store meaning have to load into register

before using values

• ldrb r0,[address] – load byte into r0 from pointer

• strb r0,[address] – store byte from r0 to memory at

pointer

• can support different widths (ldr, ldrb, ldrh, etc)

• sign vs zero extend (lsrsb)

• Complex addressing modes. register, r1+r2,

r1+r2+offset, auto-increment, etc

24

ARM32 Addressing Modes

• Regular

◦ ldrb r1, [r2] @ register

◦ ldrb r1, [r2,#20] @ register/offset

◦ ldrb r1, [r2,+r3] @ register + register

◦ ldrb r1, [r2,-r3] @ register - register

◦ ldrb r1, [r2,r3, LSL #2] @ register +/- register,

shift

• Pre-index. Calculate address, load, then store back

◦ ldrb r1, [r2, #20]! @ pre-index. Load from

25

r2+20 then write back into r2

◦ ldrb r1, [r2, r3]! @ pre-index. register

◦ ldrb r1, [r2, r3, LSL #4]! @ pre-index. shift

• Post-index: load from base, then add in and write new

value to base

◦ ldrb r1, [r2],#+1 @ post-index. load, then add

value to r2

◦ ldrb r1, [r2],r3 @ post-index register

◦ ldrb r1, [r2],r3, LSL #4 @ post-index shift

26

ARM32 Assembly – Arithmetic

• add, sub, ...

• add r0,r1,r2

• add r0,r1,#0

• Barrel shifter allows complex stuff like add r0,r1,r2

LSL #4 to optionally shift/rotate

27

ARM32 Assembly – Logic

• and, orr, eor

• and r0,r1,r2

• eor r0,r1,#0

• Barrel shifter too

28

ARM32 Assembly – Comparison

• cmp r0,r1 – sets flags

• Same as a subtract but doesn’t update destination

• Can do same thing with arithmetic if you add ‘S’ adds

r0,r1,r2

29

ARM32 Assembly – Branches

• Branch based on previous comparison

• beq, blt, bgt, etc

• b – unconditional

• bl – branch and link, calls a function and puts return

value in special LR (link register)

30

ARM32 Assembly – Stack Manipulation

• Old “store multiple” instructions, really powerful, can

use any arbitrary reg as stack, arbitrary number of

registers to push/pop, can change direction and post or

pre-increment

ldmia sp!, {r0, r1, r2, r3, ip, pc}^
• Modern also supports push {r0, r1} and pop

{r0,r1}
• On ARM32 Program Counter (PC) is a regular register.

Code will often push {r0, LR} at beginning of function

31

to save return, then pop {r0, PC} at end which puts

LR back into PC to return without an extra bl LR

instruction

32

Conditional Execution

Why are branches bad?
if (x == 5)

a+=2;

else

b-=2;

cmp r1 , #5

bne else

add r2 ,r2 ,#2

b done

else:

sub r3 ,r3 ,#2

done:

@ equivalent w/o branches

cmp r1 , #5

addeq r2,r2 ,#2

subne r3,r3 ,#2

33

Appendix: Extra notes on ARM32 Assembly

34

Setting Flags

• add r1,r2,r3

• adds r1,r2,r3 – set condition flag

• addeqs r1,r2,r3 – set condition flag and prefix

compiler and disassembler like addseq, GNU as doesn’t?

35

Conditional Execution
if (x == 5)

a+=2;

else

b-=2;

cmp r1 , #5

bne else

add r2 ,r2 ,#2

b done

else:

sub r3 ,r3 ,#2

done:

cmp r1, #5

addeq r2,r2,#2

subne r3,r3,#2

36

Arithmetic Instructions

Operate on 32-bit integers. Most of these take optional s

to set status flag

adc v1 add with carry
add v1 add
rsb v1 reverse subtract (immediate - rX)
rsc v1 reverse subtract with carry
sbc v1 subtract with carry
sub v1 subtract

37

Logic Instructions

and v1 bitwise and
bfc ?? bitfield clear, clear bits in reg
bfi ?? bitfield insert
bic v1 bitfield clear: and with negated value
clz v7 count leading zeros
eor v1 exclusive or (name shows 6502 heritage)
orn v6 or not
orr v1 bitwise or

38

Register Manipulation

mov, movs v1 move register
mvn, mvns v1 move inverted

39

Loading Constants

• In general you can get a 12-bit immediate which is 8

bits of unsigned and 4-bits of even rotate (rotate by

2*value).

0 7 6 5 4 3 2 1 0
1 1 0 7 6 5 4 3 2
2 3 2 1 0 7 6 5 4

. . .
15 7 6 5 4 3 2 1 0

This allows any single bit mask, and also allows masking

of any four sub-bytes.

• You can specify you want the assembler to try to make

40

the immediate for you: ldr r0,=0xff

ldr r0,=label

If it can’t make the immediate value, it will store in

nearby in a literal pool and do a memory read.

41

Barrel Shift in ALU instructions

If second source is a register, can optionally shift:

• LSL – Logical shift left

• LSR – Logical shift right

• ASR – Arithmetic shift right

• ROR – Rotate Right

• RRX – Rotate Right with Extend

bit zero into C, C into bit 31 (33-bit rotate)

• Why no ASL?

• Adding s lsls, lsrs puts shifted out bit into C.

42

• shift pseudo instructions

lsr r0, #3 is same as mov r0,r0 LSR #3

• For example:

add r1, r2, r3, lsr #4

r1 = r2 + (r3>>4)

• Another example (what does this do):

add r1, r2, r2, lsl #2

43

Multiply Instructions

Fast multipliers are optional

For 64-bit results,

mla v2 multiply two registers, add in a third (4 arguments)
mul v2 multiply two registers, only least sig 32bit saved
smlal v3M 32x32+64 = 64-bit (result and add source, reg pair rdhi,rdlo)
smull v3M 32x32 = 64-bit
umlal v3M unsigned 32x32+64 = 64-bit
umull v3M unsigned 32x32=64-bit

44

Divide Instructions

• On some machines it’s just not there. Original Pi. Why?

• What do you do if you want to divide?

• Shift and subtract (long division)

• Multiply by reciprocal.

45

Prefixed instructions

Most instructions can be prefixed with condition codes:

EQ, NE (equal) Z==1/Z==0
MI, PL (minus/plus) N==1/N==0
HI, LS (unsigned higher/lower) C==1&Z==0/C==0|Z==1
GE, LT (greaterequal/lessthan) N==V/N!=V
GT, LE (greaterthan, lessthan) N==V&Z==0/N!=V|Z==1

CS,HS, CC,LO (carry set,higher or same/clear) C==1,C==0
VS, VC (overflow set / clear) V==1,V==0
AL (always) (this is the default)

46

Load/Store Instructions

ldr v1 load register
ldrb v1 load register byte
ldrd v5 load double, into consecutive registers (Rd even)
ldrh v1 load register halfword, zero extends
ldrsb v1 load register signed byte, sign-extends
ldrsh v1 load register halfword, sign-extends
str v1 store register
strb v1 store byte
strd v5 store double
strh v1 store halfword

47

Addressing Modes

• Regular

◦ ldrb r1, [r2] @ register

◦ ldrb r1, [r2,#20] @ register/offset

◦ ldrb r1, [r2,+r3] @ register + register

◦ ldrb r1, [r2,-r3] @ register - register

◦ ldrb r1, [r2,r3, LSL #2] @ register +/- register,

shift

• Pre-index. Calculate address, load, then store back

◦ ldrb r1, [r2, #20]! @ pre-index. Load from

48

r2+20 then write back into r2

◦ ldrb r1, [r2, r3]! @ pre-index. register

◦ ldrb r1, [r2, r3, LSL #4]! @ pre-index. shift

• Post-index: load from base, then add in and write new

value to base

◦ ldrb r1, [r2],#+1 @ post-index. load, then add

value to r2

◦ ldrb r1, [r2],r3 @ post-index register

◦ ldrb r1, [r2],r3, LSL #4 @ post-index shift

49

Why some of these?

• ldrb r1, [r2,#20] @ register/offset

Useful for structs in C (i.e. something.else=4;)

• ldrb r1, [r2,r3, LSL #2] @ register +/- register,

shift

Useful for indexing arrays of integers (a[5]=4;)

50

Comparison Instructions

Updates status flag, no need for s

cmp v1 compare (subtract but discard result)
cmn v1 compare negative (add)
teq v1 tests if two values equal (xor) (preserves carry)
tst v1 test (and)

51

Control-Flow Instructions

Can use all of the condition code prefixes.

Branch to a label, which is +/- 32MB from PC

b v1 branch
bl v1 branch and link (return value stored in lr)
bx v4t branch to offset or reg, possible THUMB switch
blx v5 branch and link to register, with possible THUMB switch

mov pc,lr v1 return from a link

52

Load/Store multiple (stack?)

In general, no interrupt during instruction so long

instruction can be bad in embedded

Some of these have been deprecated on newer processors

• ldm – load multiple memory locations into consecutive

registers

• stm – store multiple, can be used like a PUSH instruction

• push and pop are thumb equivalent

53

Can have address mode and ! (update source):

• IA – increment after (start at Rn)

• IB – increment before (start at Rn+4)

• DA – decrement after

• DB – decrement before

Can have empty/full. Full means SP points to a used

location, Empty means it is empty:

• FA – Full ascending

54

• FD – Full descending

• EA – Empty ascending

• ED – Empty descending

Recent machines use the ”ARM-Thumb Proc Call

Standard” which says a stack is Full/Descending, so use

LDMFD/STMFD.

What does stm SP!, {r0,lr} then ldm SP!,

{r0,PC,pc} do?

55

System Instructions

• svc, swi – software interrupt

takes immediate, but ignored.

• mrs, msr – copy to/from status register. use to clear

interrupts? Can only set flags from userspace

• cdp – perform coprocessor operation

• mrc, mcr – move data to/from coprocessor

• ldc, stc – load/store to coprocessor from memory

56

Co-processor 15 is the system control coprocessor and is

used to configure the processor. Co-processor 14 is the

debugger 11 is double-precision floating point 10 is single-

precision fp as well as VFP/SIMD control 0-7 vendor

specific

57

Other Instructions

• swp – atomic swap value between register and memory

(deprecated armv7)

• ldrex/strex – atomic load/store (armv6)

• wfe/sev – armv7 low-power spinlocks

• pli/pld – preload instructions/data

• dmb/dsb – memory barriers

58

Pseudo-Instructions

adr add immediate to PC, store address in reg
nop no-operation

59

Fancy ARMv6

• mla – multiply/accumulate (armv6)

• mls – multiply and subtract

• pkh – pack halfword (armv6)

• qadd, qsub, etc. – saturating add/sub (armv6)

• rbit – reverse bit order (armv6)

• rbyte – reverse byte order (armv6)

• rev16, revsh – reverse halfwords (armv6)

• sadd16 – do two 16-bit signed adds (armv6)

• sadd8 – do 4 8-bit signed adds (armv6)

60

• sasx – (armv6)

• sbfx – signed bit field extract (armv6)

• sdiv – signed divide (only armv7-R)

• udiv – unsigned divide (armv7-R only)

• sel – select bytes based on flag (armv6)

• sm* – signed multiply/accumulate

• setend – set endianess (armv6)

• sxtb – sign extend byte (armv6)

• tbb – table branch byte, jump table (armv6)

• teq – test equivalence (armv6)

• u* – unsigned partial word instructions

61

Floating Point

ARM floating point varies and is often optional.

• various versions of vector floating point unit

• vfp3 has 16 or 32 64-bit registers

• Advanced SIMD – reuses vfp registers

Can see as 16 128-bit regs q0-q15 or 32 64-bit d0-d31

and 32 32-bit s0-s31

• SIMD supports integer, also 16-bit?

• Polynomial?

• FPSCR register (flags)

62

