
ECE 471 – Embedded Systems
Lecture 12

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

30 September 2024

https://web.eece.maine.edu/~vweaver

Announcements

• HW#4 was posted

• If you need any parts (LED, breadboard) let me know

1

LEDs and resistors

• Why not just hook an LED directly from GPIO to GND?

Need to limit current, which a resistor does

Does 5V vs 3.3V matter? Not as long as you don’t over

current and as long as above the turn-on voltage

• Why resistor when using GPIO as input?

If there’s a chance you can connect Vcc to GND directly

that will cause a short and bad things can happen.

Input by default high-impedance, but what if somehow

accidentally configured for output of 0?

2

Debouncing (from last time)

• Noisy switches, have to debounce

time

time

v
o

lt
s

v
o

lt
s

Ideal Switch Press

0 0 1 1 1 1 1 100

Actual Switch Press

0 0 0 0 0 1 0 1 1 1

3

Debouncing!

• Can you fix in hardware?

◦ Capacitors (not for homework, will be grading

software)

◦ Built-in debounce (shift-registers?) like on STM32L?

• Can you fix in software? Algorithms

◦ Wait until you get X consecutive values before

changing

◦ Get new value, wait short time and check again

◦ These all have tradeoffs and can get caught by different

4

patterns of noise

◦ Don’t read once and then just delay without reading

again

5

(Review) How Executables are Made

• Compiler generates ASM (Cross-compiler)

• Assembler generates machine language objects

• Linker creates Executable (out of objects)

6

Executable Format

• ELF (Executable and Linkable Format, Extensible

Linking Format)

Default for Linux and some other similar OSes

header, then header table describing chunks and where

they go

• Other executable formats: a.out, COFF, binary blob

7

ELF Layout

ELF Header

Text (Machine Code)

Data (Initialized Data)

Program header

Symbols

Debugging Info

....

Section header

8

ELF Description

• ELF Header includes a “magic number” saying it’s

0x7f,ELF, architecture type, OS type, etc. Also location

of program header and section header and entry point.

• Program Header, used for execution:

has info telling the OS what parts to load, how, and

where (address, permission, size, alignment)

• Program Data follows, describes data actually loaded

into memory: machine code, initialized data

9

• Other data: things like symbol names, debugging info

(DWARF), etc.

DWARF backronym = “Debugging with Attributed

Record Formats”

• Section Header, used when linking:

has info on the additional segments in code that aren’t

loaded into memory, such as debugging, symbols, etc.

10

STM32L-Discovery Physical Memory
Layout

RAM

Peripheral Space

Flash

0xffff ffff

0x4000 0000

0x2000 0000 (16k)

0x0800 0000 (128k)

0x0000 0000

Start of code

....

NMI Vector

Reset Vector

Stack Pointer

11

Raspberry Pi (32bit) Physical Layout

0x1c00 0000

0xffff ffff

0x2100 0000

0x2000 0000

0x0000 0000

0x0000 0100

0x0000 8000

Our Operating

System

Invalid

Peripheral

Registers

GPU RAM

Unused RAM

System Stack

IRQ Stack

ATAGs

IRQ Vectors

(4GB)

(528MB)

(512MB)

(448MB)

(32k)

(256)

(16k)0x0000 4000

12

Linux 32-bit Virtual Memory Map

Operating System
Stack

Operating System

0xffff ffff

Exexcutable Info

Environment Strings

0xbfff ffff

Cmd Line Arg Strings

Executable Name

Padding

Stack

Cmd Line Arg Count

Command Line Pointers

Environment Pointers

ELF Auxiliary Vectors

Text (Executable)

0x0804 8000

Data

BSS

Heap

mmap

vdso

Null Guard Page
0x0000 0000

shared libraries

13

Program Memory Layout on Linux

• Text: the program’s raw machine code

• Data: Initialized data

• BSS: uninitialized data; on Linux this is all set to 0.

• Heap: dynamic memory. malloc() (brk() syscall) and

C++ new(). Grows up.

• Stack: LIFO memory structure. Grows down.

14

Program Layout

• Kernel: is mapped into top of address space, for

performance reasons (but security...)

• Command Line arguments, Environment, AUX vectors,

etc., available above stack

• For security reasons “ASLR” (Address Space Layout

Randomization) is often enabled. From run to run the

exact addresses of all the sections is randomized, to

make it harder for hackers to compromise your system.

15

Brief overview of Virtual Memory

• Each program gets a flat 4GB (on 32-bit) view of memory

• CPU and Operating system work together to provide this

illusion

• See this much RAM even if it is more than physically

available (swapping/paging)

16

Physical vs Virtual Memory

• OS/CPU deal with “pages”, usually 4kB chunks of

memory.

• Every mem access has to be translated

• The operating system looks in “page table” to see which

physical address your virtual address maps to

• This is slow. How to improve slow memory in CPU?

Cache!

• TLB caches pagetable translations

• As long as you don’t run out of TLB entries this goes

17

fast.

18

Benefits of Virtual Memory

• Demand paging: the OS doesn’t have to load pages

into memory until the first time you actually load/store

them.

• Context Switch: when you switch to a new program,

the TLB is flushed and a different page table is used to

provide the new program its own view of memory.

• Flat memory space, all processes can start at same

memory location without having to recompile

• Security: different processes can’t see others memory (or

19

over-write it)

20

