ECE 471 — Embedded Systems
Lecture 13

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

2 October 2024

https://web.eece.maine.edu/~vweaver

Announcements

e Don't forget homework #4

Homework #3 Review — Exit in Assembly

e Exit — value is an integer which goes into r0 (x0 on
64-bit)

e Note it is an integer, not ASCII

e Be sure to comment your code and fix any wrong
comments

e Note: ABI says value going into r0 is first argument, not
the return value

e Only one line changed needed, some people
misunderstood

-y)

e 95% of students seem to be on 64-bit OS

Homework 3 — ARM32 vs THUMB?2

e be sure to specify base!

e ARM32 — 0x1048C - 0x1041c = 0x70 = 112 bytes

e Thumb2 — 0x1046C - 0x10414 = 0x58 = 88 bytes
Note on new compiler programs might be loaded at
0x500 instead

e Note it's bytes not bits. Also no need to divide by 4.
Also each hex digit is a nibble

e Differences?
o Thumb2 some instructions are 16-bit rather than 32-

-y 4

bit
humb?2 different instructions (like movt/movw)

humb2 short instructions can be 2-argument

Homework 3 — Code Density

e You need to run strip on this to see it. Why?
Debug info, including extra thumb debug as well as the
longer filename.

e You can use readelf -a and readelf -s to see the
space the various segments take up.
Look at executables, *not* the C source code.

Homework 3 — Code Sizes

arch unstripped stripped
C arm32 9,896 5556
C thumb?2 9,900 5556
asm arm32 1,308 536
C static 573,006 485,648
C ARM64 70,480 67,600

e You would think THUMB2 would be much smaller,
but the assembler makes some poor decisions about
wide/narrow instructions.

-y ;

e Reference my LL work

e C code is larger, but also remember to include the C
library:

ls -lart /lib/arm-linux-gnueabihf/libc-2.31.so0
-rwxr-xr-x 1 root root 1321488 Sep 8 09:17 /lib/arm-linux-gnueabihf/libc-2.31.so0

e There are embedded C libraries, musl, newlib, uclibc,
which are much smaller and often used in embedded
systems.

e Smallest possible executable? | have written 128 Byte
ones for competitions but you have to do sketchy things
to the ELF file to be that small

-y 8

Homework 3 — gdb

e crashes!

e have to use awful gdb interface
e line 9 is the crash

e the assembly is

1drb r3, [r3] // or 1ldrb wO, [xO]

load byte from the 32-bit address pointed to by r3, store
the resulting zero-extended byte into r3 (replacing the
old value)

e if you look at src code or info assem you can see it's

-y 9

dereferencing (following) a NULL (uninitialized) pointer,
which is always a segfault on Linux
e Note in this particular case it's not an “off the end of
the array” Issue, but rather the array doesn't exist at all
oroblem
e Don't confuse NUL terminated strings with invalid NULL
nointers

/Y 10

Homework 3 — How would you convert to
Hex instead

e How would you convert print_number to hexadecimal?

e Is it easier to divide by 16 than 107 Especially w/o a
divide instruction?

e Yes, shift and masks. Trick part is to special case 10 to
15tobe Ato F

e If read with scanf(), do you handle negative numbers?
Do you handle floating point numbers?
Characters? Hex numbers?

/Y 11

Homework 3 — Linux Tools — cal 9 1752

e Debian Linux dropped “cal” from the default install, it's
now in the “ncal” package

e cal missing days

e Julian to Gregorian calendar.

e People sad who paid weekly but paid rent monthly.

e George Washington's b-day / Hunt for Red October

e Beware believing any page you google. Some urban

egends / joke sites about this. If it were some sort of

orogrammer bug it would have been fixed years ago.

/Y 12

Briefly reviewed Virtual Memory from Last
Time

-y 13

Coding Directly for the Hardware

One way of developing embedded systems is coding to the

raw hardware, as you did with the STM Discovery Boards
in ECE271.

e Compile code
e Prepare for upload (hexbin?)

e Upload into FLASH

e Boots to offset

-y 14

e Setup, flat memory (usually), stack at top, code near
bottom, IRQ vectors

e Handle Interrupts

e Must do I/O directly (no drivers)
Although if lucky, can find existing code.

e Code is specific to the hardware you are on

-y 15

Instead, one can use an Operating System

-y 16

Why Use an Operating System?

e Provides Layers of Abstraction
o Abstract hardware: hide hardware differences. same
hardware interface for classes of hardware (things like
video cameras, disks, keyboards, etc) despite differing
Implementation details
o Abstract software: with VM get linear address space,
same system calls on all systems
e Other benefits:
o Multi-tasking / Multi-user

-y 17

o Security, permissions (Linus dial out onto /dev/hda)

o Common code in kernel and libraries, no need to re-
Invent

o Handle complex low-level tasks (interrupts, DMA,
task-switching)

/Y 18

Downsides of Operating System?

e Overhead / Abstraction has a cost
o Higher overhead (speed)
o Higher overhead (memory)

o Unknown timing (Real Time)
e Security
o Larger code base can provide larger attack surface

19

Other Aspects of Operating Systems

e What about other things?
o Easy to code for? Provide examples
o Nice GUI interface? Sometimes

20

What'’s included with an OS

e kernel / drivers (syscall barrier) — Linux definition
e also system libraries — Solaris definition

e low-level utils / software / GUI — Windows definition
Web Browser included?

e Linux usually makes distinction between the OS Kernel
and distribution. OSX/Windows usually doesn't.

/Y 21

Bypassing Linux to hit hardware directly

e On Raspberry Pi Linux does not necessarily support all
possible low-level hardware

e For example, until recently you couldn't set advanced
features of the GPIOs like pullups

e Also OS adds overhead, many syscalls to just turn on
a GPIO line which bare-metal might be a single store
Instruction

e People have written code that will poke the relevant bits
directly.

/Y 22

Bypassing Linux for speed

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/

Trying to generate fastest GPIO square wave.

shell gpio util 40Hz
shell sysfs 2.8kHz
Python WiringPi 28kHz
Python RPi.GPIO 70kHz
C sysfs (vmw) 400kHz
C WiringPi 4.6MHz
C libbcm2835 5.4MHz

C Rpi Foundation “Native” | 22MHz

/Y 23

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/

Operating Systems Types

e Monolithic kernel — everything in one big address space.
Something goes wrong, lose it all. Faster

e Microkernel — separate parts that communicate by
message passing. can restart independently. Slower.

e Microkernels were supposed to take over the world.
Didn’t happen. (GNU Hurd?)

e Famous Torvalds (Linux) vs Tannenbaum (Minix)
flamewar

-y 24

Common Desktop/Server Operating
Systems

e UNIX derived
o Linux (clone imlpemented from scratch)
o FreeBSD / NetBSD / OpenBSD
o MacOS (FreeBSD/Nextstep heritage)
o Legacy (Irix/Solaris/AlX/etc.)
e \Windows

e Obscure (BeOS/Haiku)

25

Embedded Operating Systems

e Cellphone/Tablet
o Android (Linux)
o ChromeQS (Linux)
o Apple iOS
o Microsoft (WinCE/Mobile/Phone/RT/S/loT (all
these have been discontinued))
In theory can install Windows 11 on a Raspberry Pi

e Networking
o OpenWRT (Linux)

/Y 26

o Cisco i0S

Real Time OS

o VXworks — realtime OS, used on many space probes
o QNX — realtime microkernel UNIX-like OS, owned by

Blackberry now
o ThreadX — found in Pi GPU, Microsoft owns now?

https://www.theregister.com/2023/11/28/microsoft_opens_sources_threadx/

o FreeRTOS

-y 21

https://www.theregister.com/2023/11/28/microsoft_opens_sources_threadx/

Embedded Linux Distributions

This list is horribly out of date.

e linaro — consortium that work on ARM software

e openwrt — initially designed for wireless routers

e yocto — Linux Foundation sponsored embedded distro

e maemo — embedded distro originally by Nokia (obsolete)
e MeeGo — continuation of maemo, also obsolete

e Tizen — Follow up on MeeGo, by Samsung and Intel

e Angstrom — Merger of various projects

-y 28

