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Announcements

• Don’t forget homework #4
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Homework #3 Review – Exit in Assembly

• Exit – value is an integer which goes into r0 (x0 on

64-bit)

• Note it is an integer, not ASCII

• Be sure to comment your code and fix any wrong

comments

• Note: ABI says value going into r0 is first argument, not

the return value

• Only one line changed needed, some people

misunderstood
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• 95% of students seem to be on 64-bit OS

3



Homework 3 – ARM32 vs THUMB2

• be sure to specify base!

• ARM32 – 0x1048C - 0x1041c = 0x70 = 112 bytes

• Thumb2 – 0x1046C - 0x10414 = 0x58 = 88 bytes

Note on new compiler programs might be loaded at

0x500 instead

• Note it’s bytes not bits. Also no need to divide by 4.

Also each hex digit is a nibble

• Differences?

◦ Thumb2 some instructions are 16-bit rather than 32-
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bit

◦ Thumb2 different instructions (like movt/movw)

◦ Thumb2 short instructions can be 2-argument
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Homework 3 – Code Density

• You need to run strip on this to see it. Why?

Debug info, including extra thumb debug as well as the

longer filename.

• You can use readelf -a and readelf -s to see the

space the various segments take up.

Look at executables, *not* the C source code.
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Homework 3 – Code Sizes

arch unstripped stripped

C arm32 9,896 5556

C thumb2 9,900 5556

asm arm32 1,308 536

C static 573,096 485,648

C ARM64 70,480 67,600

• You would think THUMB2 would be much smaller,

but the assembler makes some poor decisions about

wide/narrow instructions.
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• Reference my LL work

• C code is larger, but also remember to include the C
library:
ls -lart /lib/arm-linux-gnueabihf/libc-2.31.so

-rwxr-xr-x 1 root root 1321488 Sep 8 09:17 /lib/arm-linux-gnueabihf/libc-2.31.so

• There are embedded C libraries, musl, newlib, uclibc,

which are much smaller and often used in embedded

systems.

• Smallest possible executable? I have written 128 Byte

ones for competitions but you have to do sketchy things

to the ELF file to be that small
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Homework 3 – gdb

• crashes!

• have to use awful gdb interface

• line 9 is the crash

• the assembly is

ldrb r3,[r3] // or ldrb w0,[x0]

load byte from the 32-bit address pointed to by r3, store

the resulting zero-extended byte into r3 (replacing the

old value)

• if you look at src code or info assem you can see it’s
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dereferencing (following) a NULL (uninitialized) pointer,

which is always a segfault on Linux

• Note in this particular case it’s not an “off the end of

the array” issue, but rather the array doesn’t exist at all

problem

• Don’t confuse NUL terminated strings with invalid NULL

pointers
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Homework 3 – How would you convert to
Hex instead

• How would you convert print number to hexadecimal?

• Is it easier to divide by 16 than 10? Especially w/o a

divide instruction?

• Yes, shift and masks. Trick part is to special case 10 to

15 to be A to F

• If read with scanf(), do you handle negative numbers?

Do you handle floating point numbers?

Characters? Hex numbers?
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Homework 3 – Linux Tools – cal 9 1752

• Debian Linux dropped “cal” from the default install, it’s

now in the “ncal” package

• cal missing days

• Julian to Gregorian calendar.

• People sad who paid weekly but paid rent monthly.

• George Washington’s b-day / Hunt for Red October

• Beware believing any page you google. Some urban

legends / joke sites about this. If it were some sort of

programmer bug it would have been fixed years ago.
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Briefly reviewed Virtual Memory from Last
Time
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Coding Directly for the Hardware

One way of developing embedded systems is coding to the

raw hardware, as you did with the STM Discovery Boards

in ECE271.

• Compile code

• Prepare for upload (hexbin?)

• Upload into FLASH

• Boots to offset
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• Setup, flat memory (usually), stack at top, code near

bottom, IRQ vectors

• Handle Interrupts

• Must do I/O directly (no drivers)

Although if lucky, can find existing code.

• Code is specific to the hardware you are on
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Instead, one can use an Operating System
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Why Use an Operating System?

• Provides Layers of Abstraction

◦ Abstract hardware: hide hardware differences. same

hardware interface for classes of hardware (things like

video cameras, disks, keyboards, etc) despite differing

implementation details

◦ Abstract software: with VM get linear address space,

same system calls on all systems

• Other benefits:

◦ Multi-tasking / Multi-user
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◦ Security, permissions (Linus dial out onto /dev/hda)

◦ Common code in kernel and libraries, no need to re-

invent

◦ Handle complex low-level tasks (interrupts, DMA,

task-switching)
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Downsides of Operating System?

• Overhead / Abstraction has a cost

◦ Higher overhead (speed)

◦ Higher overhead (memory)

◦ Unknown timing (Real Time)

• Security

◦ Larger code base can provide larger attack surface
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Other Aspects of Operating Systems

• What about other things?

◦ Easy to code for? Provide examples

◦ Nice GUI interface? Sometimes
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What’s included with an OS

• kernel / drivers (syscall barrier) – Linux definition

• also system libraries – Solaris definition

• low-level utils / software / GUI – Windows definition

Web Browser included?

• Linux usually makes distinction between the OS Kernel

and distribution. OSX/Windows usually doesn’t.
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Bypassing Linux to hit hardware directly

• On Raspberry Pi Linux does not necessarily support all

possible low-level hardware

• For example, until recently you couldn’t set advanced

features of the GPIOs like pullups

• Also OS adds overhead, many syscalls to just turn on

a GPIO line which bare-metal might be a single store

instruction

• People have written code that will poke the relevant bits

directly.
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Bypassing Linux for speed

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/

Trying to generate fastest GPIO square wave.
shell gpio util 40Hz
shell sysfs 2.8kHz

Python WiringPi 28kHz
Python RPi.GPIO 70kHz

C sysfs (vmw) 400kHz
C WiringPi 4.6MHz
C libbcm2835 5.4MHz
C Rpi Foundation “Native” 22MHz
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Operating Systems Types

• Monolithic kernel – everything in one big address space.

Something goes wrong, lose it all. Faster

• Microkernel – separate parts that communicate by

message passing. can restart independently. Slower.

• Microkernels were supposed to take over the world.

Didn’t happen. (GNU Hurd?)

• Famous Torvalds (Linux) vs Tannenbaum (Minix)

flamewar
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Common Desktop/Server Operating
Systems

• UNIX derived

◦ Linux (clone imlpemented from scratch)

◦ FreeBSD / NetBSD / OpenBSD

◦ MacOS (FreeBSD/Nextstep heritage)

◦ Legacy (Irix/Solaris/AIX/etc.)

• Windows

• Obscure (BeOS/Haiku)
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Embedded Operating Systems

• Cellphone/Tablet

◦ Android (Linux)

◦ ChromeOS (Linux)

◦ Apple iOS

◦ Microsoft (WinCE/Mobile/Phone/RT/S/IoT (all

these have been discontinued))

In theory can install Windows 11 on a Raspberry Pi

• Networking

◦ OpenWRT (Linux)
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◦ Cisco iOS

• Real Time OS

◦ VXworks – realtime OS, used on many space probes

◦ QNX – realtime microkernel UNIX-like OS, owned by

Blackberry now

◦ ThreadX – found in Pi GPU, Microsoft owns now?

https://www.theregister.com/2023/11/28/microsoft_opens_sources_threadx/

◦ FreeRTOS
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Embedded Linux Distributions

This list is horribly out of date.

• linaro – consortium that work on ARM software

• openwrt – initially designed for wireless routers

• yocto – Linux Foundation sponsored embedded distro

• maemo – embedded distro originally by Nokia (obsolete)

• MeeGo – continuation of maemo, also obsolete

• Tizen – Follow up on MeeGo, by Samsung and Intel

• Ängstrom – Merger of various projects
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