
ECE 471 – Embedded Systems
Lecture 13

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

2 October 2024

https://web.eece.maine.edu/~vweaver


Announcements

• Don’t forget homework #4

1



Homework #3 Review – Exit in Assembly

• Exit – value is an integer which goes into r0 (x0 on

64-bit)

• Note it is an integer, not ASCII

• Be sure to comment your code and fix any wrong

comments

• Note: ABI says value going into r0 is first argument, not

the return value

• Only one line changed needed, some people

misunderstood

2



• 95% of students seem to be on 64-bit OS

3



Homework 3 – ARM32 vs THUMB2

• be sure to specify base!

• ARM32 – 0x1048C - 0x1041c = 0x70 = 112 bytes

• Thumb2 – 0x1046C - 0x10414 = 0x58 = 88 bytes

Note on new compiler programs might be loaded at

0x500 instead

• Note it’s bytes not bits. Also no need to divide by 4.

Also each hex digit is a nibble

• Differences?

◦ Thumb2 some instructions are 16-bit rather than 32-

4



bit

◦ Thumb2 different instructions (like movt/movw)

◦ Thumb2 short instructions can be 2-argument

5



Homework 3 – Code Density

• You need to run strip on this to see it. Why?

Debug info, including extra thumb debug as well as the

longer filename.

• You can use readelf -a and readelf -s to see the

space the various segments take up.

Look at executables, *not* the C source code.

6



Homework 3 – Code Sizes

arch unstripped stripped

C arm32 9,896 5556

C thumb2 9,900 5556

asm arm32 1,308 536

C static 573,096 485,648

C ARM64 70,480 67,600

• You would think THUMB2 would be much smaller,

but the assembler makes some poor decisions about

wide/narrow instructions.

7



• Reference my LL work

• C code is larger, but also remember to include the C
library:
ls -lart /lib/arm-linux-gnueabihf/libc-2.31.so

-rwxr-xr-x 1 root root 1321488 Sep 8 09:17 /lib/arm-linux-gnueabihf/libc-2.31.so

• There are embedded C libraries, musl, newlib, uclibc,

which are much smaller and often used in embedded

systems.

• Smallest possible executable? I have written 128 Byte

ones for competitions but you have to do sketchy things

to the ELF file to be that small

8



Homework 3 – gdb

• crashes!

• have to use awful gdb interface

• line 9 is the crash

• the assembly is

ldrb r3,[r3] // or ldrb w0,[x0]

load byte from the 32-bit address pointed to by r3, store

the resulting zero-extended byte into r3 (replacing the

old value)

• if you look at src code or info assem you can see it’s

9



dereferencing (following) a NULL (uninitialized) pointer,

which is always a segfault on Linux

• Note in this particular case it’s not an “off the end of

the array” issue, but rather the array doesn’t exist at all

problem

• Don’t confuse NUL terminated strings with invalid NULL

pointers

10



Homework 3 – How would you convert to
Hex instead

• How would you convert print number to hexadecimal?

• Is it easier to divide by 16 than 10? Especially w/o a

divide instruction?

• Yes, shift and masks. Trick part is to special case 10 to

15 to be A to F

• If read with scanf(), do you handle negative numbers?

Do you handle floating point numbers?

Characters? Hex numbers?

11



Homework 3 – Linux Tools – cal 9 1752

• Debian Linux dropped “cal” from the default install, it’s

now in the “ncal” package

• cal missing days

• Julian to Gregorian calendar.

• People sad who paid weekly but paid rent monthly.

• George Washington’s b-day / Hunt for Red October

• Beware believing any page you google. Some urban

legends / joke sites about this. If it were some sort of

programmer bug it would have been fixed years ago.

12



Briefly reviewed Virtual Memory from Last
Time

13



Coding Directly for the Hardware

One way of developing embedded systems is coding to the

raw hardware, as you did with the STM Discovery Boards

in ECE271.

• Compile code

• Prepare for upload (hexbin?)

• Upload into FLASH

• Boots to offset

14



• Setup, flat memory (usually), stack at top, code near

bottom, IRQ vectors

• Handle Interrupts

• Must do I/O directly (no drivers)

Although if lucky, can find existing code.

• Code is specific to the hardware you are on

15



Instead, one can use an Operating System

16



Why Use an Operating System?

• Provides Layers of Abstraction

◦ Abstract hardware: hide hardware differences. same

hardware interface for classes of hardware (things like

video cameras, disks, keyboards, etc) despite differing

implementation details

◦ Abstract software: with VM get linear address space,

same system calls on all systems

• Other benefits:

◦ Multi-tasking / Multi-user

17



◦ Security, permissions (Linus dial out onto /dev/hda)

◦ Common code in kernel and libraries, no need to re-

invent

◦ Handle complex low-level tasks (interrupts, DMA,

task-switching)

18



Downsides of Operating System?

• Overhead / Abstraction has a cost

◦ Higher overhead (speed)

◦ Higher overhead (memory)

◦ Unknown timing (Real Time)

• Security

◦ Larger code base can provide larger attack surface

19



Other Aspects of Operating Systems

• What about other things?

◦ Easy to code for? Provide examples

◦ Nice GUI interface? Sometimes

20



What’s included with an OS

• kernel / drivers (syscall barrier) – Linux definition

• also system libraries – Solaris definition

• low-level utils / software / GUI – Windows definition

Web Browser included?

• Linux usually makes distinction between the OS Kernel

and distribution. OSX/Windows usually doesn’t.

21



Bypassing Linux to hit hardware directly

• On Raspberry Pi Linux does not necessarily support all

possible low-level hardware

• For example, until recently you couldn’t set advanced

features of the GPIOs like pullups

• Also OS adds overhead, many syscalls to just turn on

a GPIO line which bare-metal might be a single store

instruction

• People have written code that will poke the relevant bits

directly.

22



Bypassing Linux for speed

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/

Trying to generate fastest GPIO square wave.
shell gpio util 40Hz
shell sysfs 2.8kHz

Python WiringPi 28kHz
Python RPi.GPIO 70kHz

C sysfs (vmw) 400kHz
C WiringPi 4.6MHz
C libbcm2835 5.4MHz
C Rpi Foundation “Native” 22MHz

23

http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/


Operating Systems Types

• Monolithic kernel – everything in one big address space.

Something goes wrong, lose it all. Faster

• Microkernel – separate parts that communicate by

message passing. can restart independently. Slower.

• Microkernels were supposed to take over the world.

Didn’t happen. (GNU Hurd?)

• Famous Torvalds (Linux) vs Tannenbaum (Minix)

flamewar

24



Common Desktop/Server Operating
Systems

• UNIX derived

◦ Linux (clone imlpemented from scratch)

◦ FreeBSD / NetBSD / OpenBSD

◦ MacOS (FreeBSD/Nextstep heritage)

◦ Legacy (Irix/Solaris/AIX/etc.)

• Windows

• Obscure (BeOS/Haiku)

25



Embedded Operating Systems

• Cellphone/Tablet

◦ Android (Linux)

◦ ChromeOS (Linux)

◦ Apple iOS

◦ Microsoft (WinCE/Mobile/Phone/RT/S/IoT (all

these have been discontinued))

In theory can install Windows 11 on a Raspberry Pi

• Networking

◦ OpenWRT (Linux)

26



◦ Cisco iOS

• Real Time OS

◦ VXworks – realtime OS, used on many space probes

◦ QNX – realtime microkernel UNIX-like OS, owned by

Blackberry now

◦ ThreadX – found in Pi GPU, Microsoft owns now?

https://www.theregister.com/2023/11/28/microsoft_opens_sources_threadx/

◦ FreeRTOS

27

https://www.theregister.com/2023/11/28/microsoft_opens_sources_threadx/


Embedded Linux Distributions

This list is horribly out of date.

• linaro – consortium that work on ARM software

• openwrt – initially designed for wireless routers

• yocto – Linux Foundation sponsored embedded distro

• maemo – embedded distro originally by Nokia (obsolete)

• MeeGo – continuation of maemo, also obsolete

• Tizen – Follow up on MeeGo, by Samsung and Intel

• Ängstrom – Merger of various projects

28


